Journal Article FZJ-2017-07721

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Interface Resolving Two-phase Flow Simulations in Gas Channels Relevant for Polymer Electrolyte Fuel Cells Using the Volume of Fluid Approach

 ;  ;  ;  ;

2018
Elsevier New York, NY [u.a.]

International journal of hydrogen energy 43(5), 2961-2976 () [10.1016/j.ijhydene.2017.12.129]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: With the increased concern about energy security, air pollution and global warming, the possibility of using polymer electrolyte fuel cells (PEFCs) in future sustainable and renewable energy systems has achieved considerable momentum. A computational fluid dynamic model describing a straight channel, relevant for water removal inside a PEFC, is devised. A volume of fluid (VOF) approach is employed to investigate the interface resolved two-phase flow behavior inside the gas channel including the gas diffusion layer (GDL) surface. From this study, it is clear that the impact on the two-phase flow pattern for different hydrophobic/hydrophilic characteristics, i.e., contact angles, at the walls and at the GDL surface is significant, compared to a situation where the walls and the interface are neither hydrophobic nor hydrophilic (i.e., 90° contact angle at the walls and also at the GDL surface). A location of the GDL surface liquid inlet in the middle of the gas channel gives droplet formation, while a location at the side of the channel gives corner flow with a convex surface shape (having hydrophilic walls and a hydrophobic GDL interface). Droplet formation only observed when the GDL surface liquid inlet is located in the middle of the channel. The droplet detachment location (along the main flow direction) and the shape of the droplet until detachment are strongly dependent on the size of the liquid inlet at the GDL surface. A smaller liquid inlet at the GDL surface (keeping the mass flow rates constant) gives smaller droplets.

Classification:

Contributing Institute(s):
  1. Elektrochemische Verfahrenstechnik (IEK-3)
  2. JARA - HPC (JARA-HPC)
Research Program(s):
  1. 135 - Fuel Cells (POF3-135) (POF3-135)
  2. Flexible Simulation of Fuel Cells with OpenFOAM (jara0070_20131101) (jara0070_20131101)

Appears in the scientific report 2018
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
JARA > JARA > JARA-JARA\-HPC
Institutssammlungen > ICE > ICE-2
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-3
Publikationsdatenbank

 Datensatz erzeugt am 2017-11-24, letzte Änderung am 2024-07-11


Restricted:
Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)