Journal Article FZJ-2017-07730

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Of the influence of the electron dose rate on the HRTEM Image contrast

 ;  ;

2017
Elsevier Science Amsterdam

Ultramicroscopy 176, 37 - 45 () [10.1016/j.ultramic.2016.11.016]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: We investigate a possible dependence between the applied electron dose-rate and the magnitude of the resulting image contrast in HRTEM of inorganic crystalline objects. The present study is focussed on the question whether electron irradiation can induce excessively strong atom vibrations or displacements, which in turn could significantly reduce the resulting image contrast. For this purpose, high-resolution images of MgO, Ge, and Au samples were acquired with varying dose rates using a CS-corrected FEI Titan 80–300 microscope operated at 300 kV accelerating voltage. This investigation shows that the magnitude of the signal contrast is independent from the dose rates occurring in conventional HRTEM experiments and that excessively strong vibrations or displacements of bulk atoms are not induced by the applied electron irradiation.

Classification:

Contributing Institute(s):
  1. Materialwissenschaft u. Werkstofftechnik (ER-C-2)
Research Program(s):
  1. 143 - Controlling Configuration-Based Phenomena (POF3-143) (POF3-143)

Appears in the scientific report 2017
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-2
Workflow collections > Public records
Publications database

 Record created 2017-11-24, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)