000840261 001__ 840261 000840261 005__ 20240711092236.0 000840261 0247_ $$2doi$$a10.1088/1402-4896/aa90c2 000840261 0247_ $$2ISSN$$a0031-8949 000840261 0247_ $$2ISSN$$a1402-4896 000840261 0247_ $$2WOS$$aWOS:000415851000002 000840261 0247_ $$2altmetric$$aaltmetric:29082933 000840261 037__ $$aFZJ-2017-07810 000840261 082__ $$a530 000840261 1001_ $$0P:(DE-Juel1)159558$$aSpilker, B.$$b0$$eCorresponding author 000840261 245__ $$aThermal Shock Induced Oxidation of Beryllium 000840261 260__ $$aBristol$$bIoP Publ.$$c2017 000840261 3367_ $$2DRIVER$$aarticle 000840261 3367_ $$2DataCite$$aOutput Types/Journal article 000840261 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511853700_21597 000840261 3367_ $$2BibTeX$$aARTICLE 000840261 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000840261 3367_ $$00$$2EndNote$$aJournal Article 000840261 520__ $$aBeryllium has been chosen as a plasma facing material for the first wall of the experimental fusion reactor ITER, mainly because of its low atomic number and oxygen getter capabilities, which are favorable for a high plasma performance. While the steady state operational temperature of 250 °C has no deteriorating effect on the beryllium surface, transient plasma events can deposit power densities of up to 1 GW m−2 on the beryllium armor tiles. Previous research has shown that the oxidation of beryllium can occur under these thermal shock events. In the present study, S-65 grade beryllium specimens were exposed to 100 thermal shocks with an absorbed power density of 0.6 GW m−2 and a pulse duration of 1 ms, leading to a peak surface temperature of ~800 °C. The induced surface morphology changes were compared to a steady state heated specimen at the same surface temperature with a holding time of 150 s. As a result, a pitting structure with an average pit diameter of ~0.45 μm was observed on the thermal shock loaded surface, which was caused by beryllium oxide grain nucleation and subsequent erosion of the weakly bound beryllium oxide particles. In contrast, the steady state heated surface exhibited a more homogeneous beryllium oxide layer featuring small pits with diameters of tens of nm and showed the beryllium oxide grain nucleation in a beginning stage. The experiment demonstrated that thermal shock loading conditions can significantly accelerate the beryllium oxide grain nucleation. The resulting surface morphology change can potentially alter the fusion application relevant erosion, absorption, and retention characteristics of beryllium. 000840261 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0 000840261 588__ $$aDataset connected to CrossRef 000840261 7001_ $$0P:(DE-Juel1)129747$$aLinke, J.$$b1$$ufzj 000840261 7001_ $$0P:(DE-Juel1)129778$$aPintsuk, G.$$b2 000840261 7001_ $$0P:(DE-Juel1)129811$$aWirtz, M.$$b3 000840261 773__ $$0PERI:(DE-600)1477351-x$$a10.1088/1402-4896/aa90c2$$gVol. T170, p. 014055 -$$p014055 -$$tPhysica scripta$$vT170$$x1402-4896$$y2017 000840261 8564_ $$uhttps://juser.fz-juelich.de/record/840261/files/Spilker_2017_Phys._Scr._2017_014055.pdf$$yRestricted 000840261 8564_ $$uhttps://juser.fz-juelich.de/record/840261/files/Spilker_2017_Phys._Scr._2017_014055.gif?subformat=icon$$xicon$$yRestricted 000840261 8564_ $$uhttps://juser.fz-juelich.de/record/840261/files/Spilker_2017_Phys._Scr._2017_014055.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000840261 8564_ $$uhttps://juser.fz-juelich.de/record/840261/files/Spilker_2017_Phys._Scr._2017_014055.jpg?subformat=icon-180$$xicon-180$$yRestricted 000840261 8564_ $$uhttps://juser.fz-juelich.de/record/840261/files/Spilker_2017_Phys._Scr._2017_014055.jpg?subformat=icon-640$$xicon-640$$yRestricted 000840261 8564_ $$uhttps://juser.fz-juelich.de/record/840261/files/Spilker_2017_Phys._Scr._2017_014055.pdf?subformat=pdfa$$xpdfa$$yRestricted 000840261 909CO $$ooai:juser.fz-juelich.de:840261$$pVDB 000840261 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159558$$aForschungszentrum Jülich$$b0$$kFZJ 000840261 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129747$$aForschungszentrum Jülich$$b1$$kFZJ 000840261 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129778$$aForschungszentrum Jülich$$b2$$kFZJ 000840261 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich$$b3$$kFZJ 000840261 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0 000840261 9141_ $$y2017 000840261 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000840261 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000840261 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000840261 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000840261 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000840261 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000840261 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000840261 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000840261 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000840261 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0 000840261 980__ $$ajournal 000840261 980__ $$aVDB 000840261 980__ $$aI:(DE-Juel1)IEK-2-20101013 000840261 980__ $$aUNRESTRICTED 000840261 981__ $$aI:(DE-Juel1)IMD-1-20101013