000840261 001__ 840261
000840261 005__ 20240711092236.0
000840261 0247_ $$2doi$$a10.1088/1402-4896/aa90c2
000840261 0247_ $$2ISSN$$a0031-8949
000840261 0247_ $$2ISSN$$a1402-4896
000840261 0247_ $$2WOS$$aWOS:000415851000002
000840261 0247_ $$2altmetric$$aaltmetric:29082933
000840261 037__ $$aFZJ-2017-07810
000840261 082__ $$a530
000840261 1001_ $$0P:(DE-Juel1)159558$$aSpilker, B.$$b0$$eCorresponding author
000840261 245__ $$aThermal Shock Induced Oxidation of Beryllium
000840261 260__ $$aBristol$$bIoP Publ.$$c2017
000840261 3367_ $$2DRIVER$$aarticle
000840261 3367_ $$2DataCite$$aOutput Types/Journal article
000840261 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511853700_21597
000840261 3367_ $$2BibTeX$$aARTICLE
000840261 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000840261 3367_ $$00$$2EndNote$$aJournal Article
000840261 520__ $$aBeryllium has been chosen as a plasma facing material for the first wall of the experimental fusion reactor ITER, mainly because of its low atomic number and oxygen getter capabilities, which are favorable for a high plasma performance. While the steady state operational temperature of 250 °C has no deteriorating effect on the beryllium surface, transient plasma events can deposit power densities of up to 1 GW m−2 on the beryllium armor tiles. Previous research has shown that the oxidation of beryllium can occur under these thermal shock events. In the present study, S-65 grade beryllium specimens were exposed to 100 thermal shocks with an absorbed power density of 0.6 GW m−2 and a pulse duration of 1 ms, leading to a peak surface temperature of ~800 °C. The induced surface morphology changes were compared to a steady state heated specimen at the same surface temperature with a holding time of 150 s. As a result, a pitting structure with an average pit diameter of ~0.45 μm was observed on the thermal shock loaded surface, which was caused by beryllium oxide grain nucleation and subsequent erosion of the weakly bound beryllium oxide particles. In contrast, the steady state heated surface exhibited a more homogeneous beryllium oxide layer featuring small pits with diameters of tens of nm and showed the beryllium oxide grain nucleation in a beginning stage. The experiment demonstrated that thermal shock loading conditions can significantly accelerate the beryllium oxide grain nucleation. The resulting surface morphology change can potentially alter the fusion application relevant erosion, absorption, and retention characteristics of beryllium.
000840261 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000840261 588__ $$aDataset connected to CrossRef
000840261 7001_ $$0P:(DE-Juel1)129747$$aLinke, J.$$b1$$ufzj
000840261 7001_ $$0P:(DE-Juel1)129778$$aPintsuk, G.$$b2
000840261 7001_ $$0P:(DE-Juel1)129811$$aWirtz, M.$$b3
000840261 773__ $$0PERI:(DE-600)1477351-x$$a10.1088/1402-4896/aa90c2$$gVol. T170, p. 014055 -$$p014055 -$$tPhysica scripta$$vT170$$x1402-4896$$y2017
000840261 8564_ $$uhttps://juser.fz-juelich.de/record/840261/files/Spilker_2017_Phys._Scr._2017_014055.pdf$$yRestricted
000840261 8564_ $$uhttps://juser.fz-juelich.de/record/840261/files/Spilker_2017_Phys._Scr._2017_014055.gif?subformat=icon$$xicon$$yRestricted
000840261 8564_ $$uhttps://juser.fz-juelich.de/record/840261/files/Spilker_2017_Phys._Scr._2017_014055.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000840261 8564_ $$uhttps://juser.fz-juelich.de/record/840261/files/Spilker_2017_Phys._Scr._2017_014055.jpg?subformat=icon-180$$xicon-180$$yRestricted
000840261 8564_ $$uhttps://juser.fz-juelich.de/record/840261/files/Spilker_2017_Phys._Scr._2017_014055.jpg?subformat=icon-640$$xicon-640$$yRestricted
000840261 8564_ $$uhttps://juser.fz-juelich.de/record/840261/files/Spilker_2017_Phys._Scr._2017_014055.pdf?subformat=pdfa$$xpdfa$$yRestricted
000840261 909CO $$ooai:juser.fz-juelich.de:840261$$pVDB
000840261 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159558$$aForschungszentrum Jülich$$b0$$kFZJ
000840261 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129747$$aForschungszentrum Jülich$$b1$$kFZJ
000840261 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129778$$aForschungszentrum Jülich$$b2$$kFZJ
000840261 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich$$b3$$kFZJ
000840261 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000840261 9141_ $$y2017
000840261 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000840261 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000840261 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000840261 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000840261 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000840261 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000840261 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000840261 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000840261 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000840261 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000840261 980__ $$ajournal
000840261 980__ $$aVDB
000840261 980__ $$aI:(DE-Juel1)IEK-2-20101013
000840261 980__ $$aUNRESTRICTED
000840261 981__ $$aI:(DE-Juel1)IMD-1-20101013