001     840261
005     20240711092236.0
024 7 _ |a 10.1088/1402-4896/aa90c2
|2 doi
024 7 _ |a 0031-8949
|2 ISSN
024 7 _ |a 1402-4896
|2 ISSN
024 7 _ |a WOS:000415851000002
|2 WOS
024 7 _ |a altmetric:29082933
|2 altmetric
037 _ _ |a FZJ-2017-07810
082 _ _ |a 530
100 1 _ |a Spilker, B.
|0 P:(DE-Juel1)159558
|b 0
|e Corresponding author
245 _ _ |a Thermal Shock Induced Oxidation of Beryllium
260 _ _ |a Bristol
|c 2017
|b IoP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1511853700_21597
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Beryllium has been chosen as a plasma facing material for the first wall of the experimental fusion reactor ITER, mainly because of its low atomic number and oxygen getter capabilities, which are favorable for a high plasma performance. While the steady state operational temperature of 250 °C has no deteriorating effect on the beryllium surface, transient plasma events can deposit power densities of up to 1 GW m−2 on the beryllium armor tiles. Previous research has shown that the oxidation of beryllium can occur under these thermal shock events. In the present study, S-65 grade beryllium specimens were exposed to 100 thermal shocks with an absorbed power density of 0.6 GW m−2 and a pulse duration of 1 ms, leading to a peak surface temperature of ~800 °C. The induced surface morphology changes were compared to a steady state heated specimen at the same surface temperature with a holding time of 150 s. As a result, a pitting structure with an average pit diameter of ~0.45 μm was observed on the thermal shock loaded surface, which was caused by beryllium oxide grain nucleation and subsequent erosion of the weakly bound beryllium oxide particles. In contrast, the steady state heated surface exhibited a more homogeneous beryllium oxide layer featuring small pits with diameters of tens of nm and showed the beryllium oxide grain nucleation in a beginning stage. The experiment demonstrated that thermal shock loading conditions can significantly accelerate the beryllium oxide grain nucleation. The resulting surface morphology change can potentially alter the fusion application relevant erosion, absorption, and retention characteristics of beryllium.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Linke, J.
|0 P:(DE-Juel1)129747
|b 1
|u fzj
700 1 _ |a Pintsuk, G.
|0 P:(DE-Juel1)129778
|b 2
700 1 _ |a Wirtz, M.
|0 P:(DE-Juel1)129811
|b 3
773 _ _ |a 10.1088/1402-4896/aa90c2
|g Vol. T170, p. 014055 -
|0 PERI:(DE-600)1477351-x
|p 014055 -
|t Physica scripta
|v T170
|y 2017
|x 1402-4896
856 4 _ |u https://juser.fz-juelich.de/record/840261/files/Spilker_2017_Phys._Scr._2017_014055.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840261/files/Spilker_2017_Phys._Scr._2017_014055.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840261/files/Spilker_2017_Phys._Scr._2017_014055.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840261/files/Spilker_2017_Phys._Scr._2017_014055.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840261/files/Spilker_2017_Phys._Scr._2017_014055.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/840261/files/Spilker_2017_Phys._Scr._2017_014055.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:840261
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159558
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129747
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129778
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129811
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21