001     840435
005     20210129231832.0
024 7 _ |a 10.1002/2017WR020832
|2 doi
024 7 _ |a 0043-1397
|2 ISSN
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 1944-7973
|2 ISSN
024 7 _ |a 2128/16068
|2 Handle
024 7 _ |a WOS:000411202000059
|2 WOS
024 7 _ |a altmetric:21855171
|2 altmetric
037 _ _ |a FZJ-2017-07952
082 _ _ |a 550
100 1 _ |a Haber-Pohlmeier, Sabine
|0 P:(DE-Juel1)129464
|b 0
|e Corresponding author
245 _ _ |a Quantitative mapping of solute accumulation in a soil-root system by magnetic resonance imaging
260 _ _ |a [New York]
|c 2017
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1512374984_12600
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Differential uptake of water and solutes by plant roots generates heterogeneous concentration distributions in soils. Noninvasive observations of root system architecture and concentration patterns therefore provide information about root water and solute uptake. We present the application of magnetic resonance imaging (MRI) to image and monitor root architecture and the distribution of a tracer, GdDTPA2− (Gadolinium-diethylenetriaminepentacetate) noninvasively during an infiltration experiment in a soil column planted with white lupin. We show that inversion recovery preparation within the MRI imaging sequence can quantitatively map concentrations of a tracer in a complex root-soil system. Instead of a simple T1 weighting, the procedure is extended by a wide range of inversion times to precisely map T1 and subsequently to cover a much broader concentration range of the solute. The derived concentrations patterns were consistent with mass balances and showed that the GdDTPA2− tracer represents a solute that is excluded by roots. Monitoring and imaging the accumulation of the tracer in the root zone therefore offers the potential to determine where and by which roots water is taken up.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Vanderborght, J.
|0 P:(DE-Juel1)129548
|b 1
700 1 _ |a Pohlmeier, Andreas
|0 P:(DE-Juel1)129521
|b 2
773 _ _ |a 10.1002/2017WR020832
|g Vol. 53, no. 8, p. 7469 - 7480
|0 PERI:(DE-600)2029553-4
|n 8
|p 7469 - 7480
|t Water resources research
|v 53
|y 2017
|x 0043-1397
856 4 _ |y Published on 2017-08-04. Available in OpenAccess from 2018-02-04.
|u https://juser.fz-juelich.de/record/840435/files/Haber-Pohlmeier_et_al-2017-Water_Resources_Research.pdf
856 4 _ |y Published on 2017-08-04. Available in OpenAccess from 2018-02-04.
|x icon
|u https://juser.fz-juelich.de/record/840435/files/Haber-Pohlmeier_et_al-2017-Water_Resources_Research.gif?subformat=icon
856 4 _ |y Published on 2017-08-04. Available in OpenAccess from 2018-02-04.
|x icon-1440
|u https://juser.fz-juelich.de/record/840435/files/Haber-Pohlmeier_et_al-2017-Water_Resources_Research.jpg?subformat=icon-1440
856 4 _ |y Published on 2017-08-04. Available in OpenAccess from 2018-02-04.
|x icon-180
|u https://juser.fz-juelich.de/record/840435/files/Haber-Pohlmeier_et_al-2017-Water_Resources_Research.jpg?subformat=icon-180
856 4 _ |y Published on 2017-08-04. Available in OpenAccess from 2018-02-04.
|x icon-640
|u https://juser.fz-juelich.de/record/840435/files/Haber-Pohlmeier_et_al-2017-Water_Resources_Research.jpg?subformat=icon-640
856 4 _ |y Published on 2017-08-04. Available in OpenAccess from 2018-02-04.
|x pdfa
|u https://juser.fz-juelich.de/record/840435/files/Haber-Pohlmeier_et_al-2017-Water_Resources_Research.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:840435
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129464
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129521
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER RESOUR RES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21