000841125 001__ 841125
000841125 005__ 20240712112832.0
000841125 0247_ $$2doi$$a10.1016/j.nanoen.2017.10.023
000841125 0247_ $$2WOS$$aWOS:000415302600078
000841125 0247_ $$2altmetric$$aaltmetric:28342228
000841125 037__ $$aFZJ-2017-08225
000841125 041__ $$aEnglish
000841125 082__ $$a540
000841125 1001_ $$0P:(DE-Juel1)164223$$aWeinrich, Henning$$b0$$eCorresponding author
000841125 245__ $$aUnderstanding the nanoscale redox-behavior of iron-anodes for rechargeable iron-air batteries
000841125 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2017
000841125 3367_ $$2DRIVER$$aarticle
000841125 3367_ $$2DataCite$$aOutput Types/Journal article
000841125 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1513004935_11336
000841125 3367_ $$2BibTeX$$aARTICLE
000841125 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841125 3367_ $$00$$2EndNote$$aJournal Article
000841125 520__ $$aIron-air cells provide a promising and resource-efficient alternative battery concept with superior area specific power density characteristics compared to state-of-the-art Li-air batteries and potentially superior energy density characteristics compared to present Li-ion batteries. Understanding charge-transfer reactions at the anode-electrolyte interface is the key to develop high-performance cells. By employing in-situ electrochemical atomic force microscopy (in-situ EC-AFM), in-depth insight into the electrochemically induced surface reaction processes on iron in concentrated alkaline electrolyte is obtained. The results highlight the formation and growth of the redox-layer on iron over the course of several oxidation/reduction cycles. By this means, a direct correlation between topography changes and the corresponding electrochemical reactions at the nanoscale could unambiguously be established. Here, the twofold character of the nanoparticulate redox-layer in terms of its passivating character and its contribution to the electrochemical reactions is elucidated. Furthermore, the evolution of single nanoparticles on the iron electrode surface is evaluated in unprecedented and artifact-free detail. Based on the dedicated topography analysis, a detailed structural model for the evolution of the redox-layer which is likewise elementary for corrosion science and battery research is derived.
000841125 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000841125 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000841125 588__ $$aDataset connected to CrossRef
000841125 7001_ $$0P:(DE-HGF)0$$aCome, Jérémy$$b1
000841125 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b2
000841125 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b3
000841125 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b4
000841125 7001_ $$0P:(DE-HGF)0$$aBalke, Nina$$b5$$eCorresponding author
000841125 773__ $$0PERI:(DE-600)2648700-7$$a10.1016/j.nanoen.2017.10.023$$gVol. 41, p. 706 - 716$$p706 - 716$$tNano energy$$v41$$x2211-2855$$y2017
000841125 8564_ $$uhttps://juser.fz-juelich.de/record/841125/files/1-s2.0-S2211285517306262-main.pdf$$yRestricted
000841125 8564_ $$uhttps://juser.fz-juelich.de/record/841125/files/1-s2.0-S2211285517306262-main.gif?subformat=icon$$xicon$$yRestricted
000841125 8564_ $$uhttps://juser.fz-juelich.de/record/841125/files/1-s2.0-S2211285517306262-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000841125 8564_ $$uhttps://juser.fz-juelich.de/record/841125/files/1-s2.0-S2211285517306262-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000841125 8564_ $$uhttps://juser.fz-juelich.de/record/841125/files/1-s2.0-S2211285517306262-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000841125 8564_ $$uhttps://juser.fz-juelich.de/record/841125/files/1-s2.0-S2211285517306262-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000841125 909CO $$ooai:juser.fz-juelich.de:841125$$pVDB
000841125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164223$$aForschungszentrum Jülich$$b0$$kFZJ
000841125 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)164223$$aRWTH Aachen$$b0$$kRWTH
000841125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b2$$kFZJ
000841125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b3$$kFZJ
000841125 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b4$$kFZJ
000841125 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b4$$kRWTH
000841125 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000841125 9141_ $$y2017
000841125 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO ENERGY : 2015
000841125 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841125 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841125 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841125 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841125 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841125 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000841125 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO ENERGY : 2015
000841125 920__ $$lyes
000841125 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000841125 980__ $$ajournal
000841125 980__ $$aVDB
000841125 980__ $$aI:(DE-Juel1)IEK-9-20110218
000841125 980__ $$aUNRESTRICTED
000841125 981__ $$aI:(DE-Juel1)IET-1-20110218