Journal Article FZJ-2017-08225

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Understanding the nanoscale redox-behavior of iron-anodes for rechargeable iron-air batteries

 ;  ;  ;  ;  ;

2017
Elsevier Amsterdam [u.a.]

Nano energy 41, 706 - 716 () [10.1016/j.nanoen.2017.10.023]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Iron-air cells provide a promising and resource-efficient alternative battery concept with superior area specific power density characteristics compared to state-of-the-art Li-air batteries and potentially superior energy density characteristics compared to present Li-ion batteries. Understanding charge-transfer reactions at the anode-electrolyte interface is the key to develop high-performance cells. By employing in-situ electrochemical atomic force microscopy (in-situ EC-AFM), in-depth insight into the electrochemically induced surface reaction processes on iron in concentrated alkaline electrolyte is obtained. The results highlight the formation and growth of the redox-layer on iron over the course of several oxidation/reduction cycles. By this means, a direct correlation between topography changes and the corresponding electrochemical reactions at the nanoscale could unambiguously be established. Here, the twofold character of the nanoparticulate redox-layer in terms of its passivating character and its contribution to the electrochemical reactions is elucidated. Furthermore, the evolution of single nanoparticles on the iron electrode surface is evaluated in unprecedented and artifact-free detail. Based on the dedicated topography analysis, a detailed structural model for the evolution of the redox-layer which is likewise elementary for corrosion science and battery research is derived.

Classification:

Contributing Institute(s):
  1. Grundlagen der Elektrochemie (IEK-9)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)
  2. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2017
Database coverage:
Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; IF >= 10 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-1
Workflow collections > Public records
IEK > IEK-9
Publications database

 Record created 2017-12-11, last modified 2024-07-12


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)