Home > Publications database > Magnetoconductance correction in zinc-blende semiconductor nanowires with spin-orbit coupling > print |
001 | 841488 | ||
005 | 20230426083155.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevB.96.235302 |2 doi |
024 | 7 | _ | |a 0163-1829 |2 ISSN |
024 | 7 | _ | |a 0556-2805 |2 ISSN |
024 | 7 | _ | |a 1094-1622 |2 ISSN |
024 | 7 | _ | |a 1095-3795 |2 ISSN |
024 | 7 | _ | |a 1098-0121 |2 ISSN |
024 | 7 | _ | |a 1550-235X |2 ISSN |
024 | 7 | _ | |a 2469-9950 |2 ISSN |
024 | 7 | _ | |a 2469-9969 |2 ISSN |
024 | 7 | _ | |a 2128/16578 |2 Handle |
024 | 7 | _ | |a WOS:000417128500001 |2 WOS |
024 | 7 | _ | |a altmetric:25085830 |2 altmetric |
037 | _ | _ | |a FZJ-2017-08532 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Kammermeier, Michael |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Magnetoconductance correction in zinc-blende semiconductor nanowires with spin-orbit coupling |
260 | _ | _ | |a Woodbury, NY |c 2017 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1516103635_14948 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We study the effects of spin-orbit coupling on the magnetoconductivity in diffusive cylindrical semiconductor nanowires. Following up on our former study on tubular semiconductor nanowires, we focus in this paper on nanowire systems where no surface accumulation layer is formed but instead the electron wave function extends over the entire cross section. We take into account the Dresselhaus spin-orbit coupling resulting from a zinc-blende lattice and the Rashba spin-orbit coupling, which is controlled by a lateral gate electrode. The spin relaxation rate due to Dresselhaus spin-orbit coupling is found to depend neither on the spin density component nor on the wire growth direction and is unaffected by the radial boundary. In contrast, the Rashba spin relaxation rate is strongly reduced for a wire radius that is smaller than the spin precession length. The derived model is fitted to the data of magnetoconductance measurements of a heavily doped back-gated InAs nanowire and transport parameters are extracted. At last, we compare our results to previous theoretical and experimental studies and discuss the occurring discrepancies. |
536 | _ | _ | |a 522 - Controlling Spin-Based Phenomena (POF3-522) |0 G:(DE-HGF)POF3-522 |c POF3-522 |f POF III |x 0 |
542 | _ | _ | |i 2017-12-06 |2 Crossref |u https://link.aps.org/licenses/aps-default-license |
588 | _ | _ | |a Dataset connected to CrossRef |
650 | 2 | 7 | |a Condensed Matter Physics |0 V:(DE-MLZ)SciArea-120 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Information and Communication |0 V:(DE-MLZ)GC-120-2016 |2 V:(DE-HGF) |x 0 |
700 | 1 | _ | |a Wenk, Paul |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Schliemann, John |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Heedt, Sebastian |0 P:(DE-Juel1)140272 |b 3 |
700 | 1 | _ | |a Gerster, Thomas |0 P:(DE-Juel1)156193 |b 4 |
700 | 1 | _ | |a Schäpers, Thomas |0 P:(DE-Juel1)128634 |b 5 |
773 | 1 | 8 | |a 10.1103/physrevb.96.235302 |b American Physical Society (APS) |d 2017-12-06 |n 23 |p 235302 |3 journal-article |2 Crossref |t Physical Review B |v 96 |y 2017 |x 2469-9950 |
773 | _ | _ | |a 10.1103/PhysRevB.96.235302 |g Vol. 96, no. 23, p. 235302 |0 PERI:(DE-600)2844160-6 |n 23 |p 235302 |t Physical review / B |v 96 |y 2017 |x 2469-9950 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/841488/files/PhysRevB.96.235302.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/841488/files/PhysRevB.96.235302.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/841488/files/PhysRevB.96.235302.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/841488/files/PhysRevB.96.235302.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/841488/files/PhysRevB.96.235302.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/841488/files/PhysRevB.96.235302.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:841488 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)140272 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)156193 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)128634 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-522 |2 G:(DE-HGF)POF3-500 |v Controlling Spin-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1021/nl100665r |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.2089157 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nature04796 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nphoton.2013.32 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/nl5006004 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acs.nanolett.5b02900 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.105.177002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.1222360 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.71.205328 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.79.121311 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/nl101181e |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.82.235303 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.91.201413 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.93.205306 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.81.155449 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/nl301325h |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.94.035444 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41598-017-01080-0 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.117.236801 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/RevModPhys.89.011001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1361-6641/aa5dd6 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nature01141 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.jcrysgro.2005.11.075 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0268-1242/25/2/024005 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.3631026 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0957-4484/24/3/035203 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0957-4484/24/8/085603 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/s12274-014-0524-x |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acs.nanolett.5b01190 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1039/C5NR03608A |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1021/acs.nanolett.6b02061 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.98.176808 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.81.125309 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.83.115301 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.83.115305 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41598-017-03415-3 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.46.6846 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/b13586 |1 R. Winkler |2 Crossref |9 -- missing cx lookup -- |y 2003 |
999 | C | 5 | |a 10.1103/RevModPhys.76.323 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physrep.2010.04.002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1143/PTP.63.707 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 P. Wenk |y 2010 |2 Crossref |t Handbook on Nanophysics |o P. Wenk Handbook on Nanophysics 2010 |
999 | C | 5 | |1 B. L. Al'tshuler |y 1981 |2 Crossref |o B. L. Al'tshuler 1981 |
999 | C | 5 | |1 B. L. Al'tshuler |y 1981 |2 Crossref |o B. L. Al'tshuler 1981 |
999 | C | 5 | |a 10.1103/PhysRevLett.87.256801 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 J. S. Meyer |y 2002 |2 Crossref |t Nato Science Series II |o J. S. Meyer Nato Science Series II 2002 |
999 | C | 5 | |a 10.1088/0957-4484/24/37/375202 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.94.165431 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 M. I. D'yakonov |y 1971 |2 Crossref |o M. I. D'yakonov 1971 |
999 | C | 5 | |1 M. I. D'yakonov |y 1971 |2 Crossref |o M. I. D'yakonov 1971 |
999 | C | 5 | |1 M. D'yakonov |y 1986 |2 Crossref |o M. D'yakonov 1986 |
999 | C | 5 | |1 M. D'yakonov |y 1986 |2 Crossref |o M. D'yakonov 1986 |
999 | C | 5 | |1 S. V. Iordanskii |y 1994 |2 Crossref |o S. V. Iordanskii 1994 |
999 | C | 5 | |1 S. V. Iordanskii |y 1994 |2 Crossref |o S. V. Iordanskii 1994 |
999 | C | 5 | |a 10.1103/PhysRevB.51.16928 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.53.3912 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 G. E. Pikus |y 1984 |2 Crossref |t Optical Orientation |o G. E. Pikus Optical Orientation 1984 |
999 | C | 5 | |a 10.1103/PhysRevB.38.3232 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.11.1555 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0953-8984/14/18/201 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.36.7751 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.359026 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0370-1573(86)90027-X |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|