Journal Article FZJ-2017-08532

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Magnetoconductance correction in zinc-blende semiconductor nanowires with spin-orbit coupling

 ;  ;  ;  ;  ;

2017
Inst. Woodbury, NY

Physical review / B 96(23), 235302 () [10.1103/PhysRevB.96.235302]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: We study the effects of spin-orbit coupling on the magnetoconductivity in diffusive cylindrical semiconductor nanowires. Following up on our former study on tubular semiconductor nanowires, we focus in this paper on nanowire systems where no surface accumulation layer is formed but instead the electron wave function extends over the entire cross section. We take into account the Dresselhaus spin-orbit coupling resulting from a zinc-blende lattice and the Rashba spin-orbit coupling, which is controlled by a lateral gate electrode. The spin relaxation rate due to Dresselhaus spin-orbit coupling is found to depend neither on the spin density component nor on the wire growth direction and is unaffected by the radial boundary. In contrast, the Rashba spin relaxation rate is strongly reduced for a wire radius that is smaller than the spin precession length. The derived model is fitted to the data of magnetoconductance measurements of a heavily doped back-gated InAs nanowire and transport parameters are extracted. At last, we compare our results to previous theoretical and experimental studies and discuss the occurring discrepancies.

Keyword(s): Information and Communication (1st) ; Condensed Matter Physics (2nd)

Classification:

Contributing Institute(s):
  1. Halbleiter-Nanoelektronik (PGI-9)
  2. JARA-FIT (JARA-FIT)
Research Program(s):
  1. 522 - Controlling Spin-Based Phenomena (POF3-522) (POF3-522)

Appears in the scientific report 2017
Database coverage:
Medline ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-9
Workflow collections > Public records
Publications database
Open Access

 Record created 2017-12-19, last modified 2023-04-26