000841498 001__ 841498
000841498 005__ 20210129232024.0
000841498 0247_ $$2doi$$a10.1088/1367-2630/aa833d
000841498 0247_ $$2Handle$$a2128/16930
000841498 0247_ $$2WOS$$aWOS:000412894500002
000841498 0247_ $$2altmetric$$aaltmetric:18004939
000841498 037__ $$aFZJ-2017-08542
000841498 082__ $$a530
000841498 1001_ $$0P:(DE-HGF)0$$aHerzog, F.$$b0
000841498 245__ $$aExperimental determination of Rashba and Dresselhaus parameters and g * -factor anisotropy via Shubnikov-de Haas oscillations
000841498 260__ $$a[Bad Honnef]$$bDt. Physikalische Ges.$$c2017
000841498 3367_ $$2DRIVER$$aarticle
000841498 3367_ $$2DataCite$$aOutput Types/Journal article
000841498 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1517410273_28755
000841498 3367_ $$2BibTeX$$aARTICLE
000841498 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841498 3367_ $$00$$2EndNote$$aJournal Article
000841498 520__ $$aThe spin splitting of conduction band electrons in inversion-asymmetric InGaAs/InP quantum wells (QWs) is studied by Shubnikov-de Haas measurements combining the analysis of beating patterns and coincidence measurements in doubly tilted magnetic fields. The method allows us to determine the absolute values of the Rashba and linear Dresselhaus spin–orbit interaction (SOI) coefficients, their relative sign and the full Landé g-tensor. This is achieved by analyzing the anisotropy of the beat node positions with respect to both polar and azimuthal angles between the magnetic field direction and the QW normal. We show that the SOI is dominated by a large Rashba coefficient together with a linear Dresselhaus coefficient that is 10% of the Rashba coefficient. Their relative sign is found to be positive. The g-tensor is found to have a marked out-of-plane anisotropy and a smaller but distinct in-plane anisotropy due to SOI.
000841498 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000841498 588__ $$aDataset connected to CrossRef
000841498 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000841498 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
000841498 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, H.$$b1$$ufzj
000841498 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b2$$ufzj
000841498 7001_ $$0P:(DE-HGF)0$$aGrundler, D.$$b3
000841498 7001_ $$0P:(DE-HGF)0$$aWilde, M. A.$$b4$$eCorresponding author
000841498 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/aa833d$$gVol. 19, no. 10, p. 103012 -$$n10$$p103012 -$$tNew journal of physics$$v19$$x1367-2630$$y2017
000841498 8564_ $$uhttps://juser.fz-juelich.de/record/841498/files/Herzog_2017_New_J._Phys._19_103012.pdf$$yOpenAccess
000841498 8564_ $$uhttps://juser.fz-juelich.de/record/841498/files/Herzog_2017_New_J._Phys._19_103012.gif?subformat=icon$$xicon$$yOpenAccess
000841498 8564_ $$uhttps://juser.fz-juelich.de/record/841498/files/Herzog_2017_New_J._Phys._19_103012.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000841498 8564_ $$uhttps://juser.fz-juelich.de/record/841498/files/Herzog_2017_New_J._Phys._19_103012.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000841498 8564_ $$uhttps://juser.fz-juelich.de/record/841498/files/Herzog_2017_New_J._Phys._19_103012.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000841498 8564_ $$uhttps://juser.fz-juelich.de/record/841498/files/Herzog_2017_New_J._Phys._19_103012.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000841498 909CO $$ooai:juser.fz-juelich.de:841498$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000841498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich$$b1$$kFZJ
000841498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b2$$kFZJ
000841498 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000841498 9141_ $$y2017
000841498 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000841498 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841498 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000841498 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW J PHYS : 2015
000841498 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000841498 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000841498 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841498 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841498 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841498 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000841498 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000841498 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000841498 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841498 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841498 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000841498 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841498 920__ $$lyes
000841498 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000841498 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000841498 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x2
000841498 980__ $$ajournal
000841498 980__ $$aVDB
000841498 980__ $$aUNRESTRICTED
000841498 980__ $$aI:(DE-Juel1)PGI-9-20110106
000841498 980__ $$aI:(DE-82)080009_20140620
000841498 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000841498 9801_ $$aFullTexts