Journal Article FZJ-2017-08542

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Experimental determination of Rashba and Dresselhaus parameters and g * -factor anisotropy via Shubnikov-de Haas oscillations

 ;  ;  ;  ;

2017
Dt. Physikalische Ges. [Bad Honnef]

New journal of physics 19(10), 103012 - () [10.1088/1367-2630/aa833d]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The spin splitting of conduction band electrons in inversion-asymmetric InGaAs/InP quantum wells (QWs) is studied by Shubnikov-de Haas measurements combining the analysis of beating patterns and coincidence measurements in doubly tilted magnetic fields. The method allows us to determine the absolute values of the Rashba and linear Dresselhaus spin–orbit interaction (SOI) coefficients, their relative sign and the full Landé g-tensor. This is achieved by analyzing the anisotropy of the beat node positions with respect to both polar and azimuthal angles between the magnetic field direction and the QW normal. We show that the SOI is dominated by a large Rashba coefficient together with a linear Dresselhaus coefficient that is 10% of the Rashba coefficient. Their relative sign is found to be positive. The g-tensor is found to have a marked out-of-plane anisotropy and a smaller but distinct in-plane anisotropy due to SOI.

Keyword(s): Information and Communication (1st) ; Condensed Matter Physics (2nd)

Classification:

Contributing Institute(s):
  1. Halbleiter-Nanoelektronik (PGI-9)
  2. JARA-FIT (JARA-FIT)
  3. Materialwissenschaft u. Werkstofftechnik (ER-C-2)
Research Program(s):
  1. 522 - Controlling Spin-Based Phenomena (POF3-522) (POF3-522)

Appears in the scientific report 2017
Database coverage:
Medline ; Creative Commons Attribution CC BY 3.0 ; DOAJ ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-2
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-9
Workflow collections > Public records
Publications database
Open Access

 Record created 2017-12-19, last modified 2021-01-29