001     841498
005     20210129232024.0
024 7 _ |a 10.1088/1367-2630/aa833d
|2 doi
024 7 _ |a 2128/16930
|2 Handle
024 7 _ |a WOS:000412894500002
|2 WOS
024 7 _ |a altmetric:18004939
|2 altmetric
037 _ _ |a FZJ-2017-08542
082 _ _ |a 530
100 1 _ |a Herzog, F.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Experimental determination of Rashba and Dresselhaus parameters and g * -factor anisotropy via Shubnikov-de Haas oscillations
260 _ _ |a [Bad Honnef]
|c 2017
|b Dt. Physikalische Ges.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1517410273_28755
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The spin splitting of conduction band electrons in inversion-asymmetric InGaAs/InP quantum wells (QWs) is studied by Shubnikov-de Haas measurements combining the analysis of beating patterns and coincidence measurements in doubly tilted magnetic fields. The method allows us to determine the absolute values of the Rashba and linear Dresselhaus spin–orbit interaction (SOI) coefficients, their relative sign and the full Landé g-tensor. This is achieved by analyzing the anisotropy of the beat node positions with respect to both polar and azimuthal angles between the magnetic field direction and the QW normal. We show that the SOI is dominated by a large Rashba coefficient together with a linear Dresselhaus coefficient that is 10% of the Rashba coefficient. Their relative sign is found to be positive. The g-tensor is found to have a marked out-of-plane anisotropy and a smaller but distinct in-plane anisotropy due to SOI.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Condensed Matter Physics
|0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|x 0
650 1 7 |a Information and Communication
|0 V:(DE-MLZ)GC-120-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Hardtdegen, H.
|0 P:(DE-Juel1)125593
|b 1
|u fzj
700 1 _ |a Schäpers, Thomas
|0 P:(DE-Juel1)128634
|b 2
|u fzj
700 1 _ |a Grundler, D.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wilde, M. A.
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1088/1367-2630/aa833d
|g Vol. 19, no. 10, p. 103012 -
|0 PERI:(DE-600)1464444-7
|n 10
|p 103012 -
|t New journal of physics
|v 19
|y 2017
|x 1367-2630
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/841498/files/Herzog_2017_New_J._Phys._19_103012.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/841498/files/Herzog_2017_New_J._Phys._19_103012.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/841498/files/Herzog_2017_New_J._Phys._19_103012.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/841498/files/Herzog_2017_New_J._Phys._19_103012.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/841498/files/Herzog_2017_New_J._Phys._19_103012.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/841498/files/Herzog_2017_New_J._Phys._19_103012.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:841498
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)125593
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128634
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEW J PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21