001     841712
005     20240712100919.0
024 7 _ |a 10.5194/acp-17-14937-2017
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/16340
|2 Handle
024 7 _ |a WOS:000418198000004
|2 WOS
024 7 _ |a altmetric:30614213
|2 altmetric
037 _ _ |a FZJ-2018-00020
082 _ _ |a 550
100 1 _ |a Krisch, Isabell
|0 P:(DE-Juel1)165731
|b 0
|e Corresponding author
245 _ _ |a First tomographic observations of gravity waves by the infrared limb imager GLORIA
260 _ _ |a Katlenburg-Lindau
|c 2017
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1531737969_26640
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Atmospheric gravity waves are a major cause of uncertainty in atmosphere general circulation models. This uncertainty affects regional climate projections and seasonal weather predictions. Improving the representation of gravity waves in general circulation models is therefore of primary interest. In this regard, measurements providing an accurate 3-D characterization of gravity waves are needed. Using the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), the first airborne implementation of a novel infrared limb imaging technique, a gravity wave event over Iceland was observed. An air volume disturbed by this gravity wave was investigated from different angles by encircling the volume with a closed flight pattern. Using a tomographic retrieval approach, the measurements of this air mass at different angles allowed for a 3-D reconstruction of the temperature and trace gas structure. The temperature measurements were used to derive gravity wave amplitudes, 3-D wave vectors, and direction-resolved momentum fluxes. These parameters facilitated the backtracing of the waves to their sources on the southern coast of Iceland. Two wave packets are distinguished, one stemming from the main mountain ridge in the south of Iceland and the other from the smaller mountains in the north. The total area-integrated fluxes of these two wave packets are determined. Forward ray tracing reveals that the waves propagate laterally more than 2000 km away from their source region. A comparison of a 3-D ray-tracing version to solely column-based propagation showed that lateral propagation can help the waves to avoid critical layers and propagate to higher altitudes. Thus, the implementation of oblique gravity wave propagation into general circulation models may improve their predictive skills.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
536 _ _ |a Tomographic retrievals of temperature and trace gasses from GLORIA measurements (jiek72_20160501)
|0 G:(DE-Juel1)jiek72_20160501
|c jiek72_20160501
|f Tomographic retrievals of temperature and trace gasses from GLORIA measurements
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Preusse, Peter
|0 P:(DE-Juel1)129143
|b 1
|u fzj
700 1 _ |a Ungermann, Jörn
|0 0000-0001-9095-8332
|b 2
700 1 _ |a Dörnbrack, Andreas
|0 0000-0003-0936-0216
|b 3
700 1 _ |a Eckermann, Stephen D.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ern, Manfred
|0 P:(DE-Juel1)129117
|b 5
700 1 _ |a Friedl-Vallon, Felix
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kaufmann, Martin
|0 P:(DE-Juel1)129128
|b 7
|u fzj
700 1 _ |a Oelhaf, Hermann
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Rapp, Markus
|0 0000-0003-1508-5900
|b 9
700 1 _ |a Strube, Cornelia
|0 P:(DE-Juel1)169715
|b 10
|u fzj
700 1 _ |a Riese, Martin
|0 P:(DE-Juel1)129145
|b 11
|u fzj
773 _ _ |a 10.5194/acp-17-14937-2017
|g Vol. 17, no. 24, p. 14937 - 14953
|0 PERI:(DE-600)2069847-1
|n 24
|p 14937 - 14953
|t Atmospheric chemistry and physics
|v 17
|y 2017
|x 1680-7324
856 4 _ |u https://juser.fz-juelich.de/record/841712/files/invoice_Helmholtz-PUC-2018-6.pdf
856 4 _ |u https://juser.fz-juelich.de/record/841712/files/acp-17-14937-2017.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/841712/files/invoice_Helmholtz-PUC-2018-6.gif?subformat=icon
|x icon
856 4 _ |u https://juser.fz-juelich.de/record/841712/files/invoice_Helmholtz-PUC-2018-6.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/841712/files/invoice_Helmholtz-PUC-2018-6.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/841712/files/invoice_Helmholtz-PUC-2018-6.jpg?subformat=icon-640
|x icon-640
856 4 _ |u https://juser.fz-juelich.de/record/841712/files/invoice_Helmholtz-PUC-2018-6.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/841712/files/acp-17-14937-2017.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/841712/files/acp-17-14937-2017.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/841712/files/acp-17-14937-2017.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/841712/files/acp-17-14937-2017.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/841712/files/acp-17-14937-2017.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:841712
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165731
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129143
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129117
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129128
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)169715
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)129145
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21