001     841763
005     20240711114017.0
024 7 _ |a 10.1016/j.nme.2016.10.022
|2 doi
024 7 _ |a 2128/16353
|2 Handle
024 7 _ |a WOS:000417293300089
|2 WOS
037 _ _ |a FZJ-2018-00067
082 _ _ |a 333.7
100 1 _ |a Kirschner, A.
|0 P:(DE-Juel1)2620
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Modelling of deposition and erosion of injected WF 6 and MoF 6 in TEXTOR
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515075668_1051
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tracer injection experiments in TEXTOR with MoF6 and WF6 lead to local deposition of about 6% for Mo and about 1% for W relative to the injected amount of Mo and W atoms. Modelling of these experiments has been done with ERO applying updated data for physical sputtering. The dissociation of the injected molecules has been treated in a simplified manner due to the lack of dissociation rate coefficients. However, with this it was possible to reproduce the observed radial penetration of Mo and W atoms into the plasma. The modelled local deposition efficiencies are about 50% for Mo and 60% for W assuming typical plasma parameters for the experimental conditions used. To reproduce the measured deposition efficiencies an enhancement factor for the erosion of deposited Mo and W has to be assumed (∼10 for Mo and ∼25 for W). Due to the rather low electron temperature Te of these plasma conditions (Te∼15 eV at the location of injection), Mo and W are mostly sputtered by impurities whereas sputtering due to deuterium is negligible. A parameter study applying larger electron temperature leads to increased sputtering and thus to reduced local deposition efficiencies of about 30% for Mo and 5% for W. Though, even under these conditions enhanced erosion, albeit with reduced enhancement factors, is needed in the modelling to obtain the small measured deposition efficiencies.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kreter, A.
|0 P:(DE-Juel1)130070
|b 1
|u fzj
700 1 _ |a Wienhold, P.
|0 P:(DE-Juel1)130193
|b 2
|u fzj
700 1 _ |a Weckmann, A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Pospieszczyk, A.
|0 P:(DE-Juel1)130122
|b 4
|u fzj
700 1 _ |a Ding, R.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Borodin, D.
|0 P:(DE-Juel1)7884
|b 6
|u fzj
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 7
|u fzj
700 1 _ |a Sergienko, G.
|0 P:(DE-Juel1)130158
|b 8
|u fzj
700 1 _ |a Rubel, M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Linsmeier, Ch.
|0 P:(DE-Juel1)157640
|b 10
|u fzj
773 _ _ |a 10.1016/j.nme.2016.10.022
|g Vol. 12, p. 564 - 568
|0 PERI:(DE-600)2808888-8
|p 564 - 568
|t Nuclear materials and energy
|v 12
|y 2017
|x 2352-1791
856 4 _ |u https://juser.fz-juelich.de/record/841763/files/1-s2.0-S2352179116300473-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/841763/files/1-s2.0-S2352179116300473-main.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/841763/files/1-s2.0-S2352179116300473-main.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/841763/files/1-s2.0-S2352179116300473-main.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/841763/files/1-s2.0-S2352179116300473-main.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/841763/files/1-s2.0-S2352179116300473-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:841763
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)2620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130070
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130193
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130122
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)7884
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130158
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)157640
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21