000841856 001__ 841856
000841856 005__ 20210129232111.0
000841856 0247_ $$2doi$$a10.1039/C7CP07441G
000841856 0247_ $$2ISSN$$a1463-9076
000841856 0247_ $$2ISSN$$a1463-9084
000841856 0247_ $$2pmid$$apmid:29234759
000841856 0247_ $$2WOS$$aWOS:000419219700029
000841856 037__ $$aFZJ-2018-00154
000841856 082__ $$a540
000841856 1001_ $$0P:(DE-HGF)0$$aGries, U. N.$$b0
000841856 245__ $$aA SIMS study of cation and anion diffusion in tantalum oxide
000841856 260__ $$aCambridge$$bRSC Publ.$$c2018
000841856 3367_ $$2DRIVER$$aarticle
000841856 3367_ $$2DataCite$$aOutput Types/Journal article
000841856 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515392913_28987
000841856 3367_ $$2BibTeX$$aARTICLE
000841856 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841856 3367_ $$00$$2EndNote$$aJournal Article
000841856 520__ $$aIon transport in ceramics of the low-temperature phase of tantalum pentoxide, L-Ta2O5, was examined by means of diffusion experiments and subsequent analysis of diffusion profiles with time-of-flight secondary ion mass spectrometry (ToF-SIMS). 18O/16O isotope anneals were used to investigate oxygen diffusion, and oxygen tracer diffusion coefficients were obtained for the temperature range of 623 ≤ T/K ≤ 873 at an oxygen partial pressure of pO2 = 0.2 bar and for the oxygen partial pressure range of 10−2 ≤ pO2/bar ≤ 100 at a temperature of T = 723 K. Cation diffusion in Ta2O5 was probed by using chemically similar niobium as the diffusant (in the absence of stable tantalum isotopes). Thin films of Nb2O5 were deposited onto Ta2O5 ceramics; diffusion anneals yielded niobium diffusion coefficients for the temperature range of 1073 ≤ T/K ≤ 1223 at an oxygen partial pressure of pO2 = 0.2 bar. Comparison of the measured diffusion coefficients strongly suggests that oxygen is many orders of magnitude more mobile than niobium in L-Ta2O5 at these temperatures and at pO2 = 0.2 bar. The electrical conductivity was also determined in the range 950 ≤ T/K ≤ 1200 and 10−23 ≤ pO2/bar ≤ 10−2. Considered together with the measured diffusion coefficients, the conductivity data indicate that under oxidising conditions conduction is due to oxygen ions above T = 1090–1130 K and due to electron holes below this temperature range. Point-defect models are presented that are consistent with these transport data and with conductivity data in the literature. They suggest that under oxidising conditions oxygen interstitials are the majority ionic charge carriers in L-Ta2O5. The implications for resistive switching devices are discussed.
000841856 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000841856 588__ $$aDataset connected to CrossRef
000841856 7001_ $$0P:(DE-HGF)0$$aSchraknepper, H.$$b1
000841856 7001_ $$0P:(DE-Juel1)145428$$aSkaja, K.$$b2
000841856 7001_ $$0P:(DE-Juel1)130677$$aGunkel, F.$$b3
000841856 7001_ $$0P:(DE-Juel1)130717$$aHoffmann-Eifert, S.$$b4
000841856 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b5
000841856 7001_ $$00000-0001-7721-4128$$aDe Souza, R. A.$$b6$$eCorresponding author
000841856 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C7CP07441G$$gVol. 20, no. 2, p. 989 - 996$$n2$$p989 - 996$$tPhysical chemistry, chemical physics$$v20$$x1463-9084$$y2018
000841856 8564_ $$uhttps://juser.fz-juelich.de/record/841856/files/c7cp07441g.pdf$$yRestricted
000841856 8564_ $$uhttps://juser.fz-juelich.de/record/841856/files/c7cp07441g.gif?subformat=icon$$xicon$$yRestricted
000841856 8564_ $$uhttps://juser.fz-juelich.de/record/841856/files/c7cp07441g.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000841856 8564_ $$uhttps://juser.fz-juelich.de/record/841856/files/c7cp07441g.jpg?subformat=icon-180$$xicon-180$$yRestricted
000841856 8564_ $$uhttps://juser.fz-juelich.de/record/841856/files/c7cp07441g.jpg?subformat=icon-640$$xicon-640$$yRestricted
000841856 8564_ $$uhttps://juser.fz-juelich.de/record/841856/files/c7cp07441g.pdf?subformat=pdfa$$xpdfa$$yRestricted
000841856 909CO $$ooai:juser.fz-juelich.de:841856$$pVDB
000841856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b3$$kFZJ
000841856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130717$$aForschungszentrum Jülich$$b4$$kFZJ
000841856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b5$$kFZJ
000841856 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000841856 9141_ $$y2018
000841856 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000841856 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000841856 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2015
000841856 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841856 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841856 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000841856 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841856 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841856 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841856 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841856 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841856 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000841856 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000841856 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000841856 980__ $$ajournal
000841856 980__ $$aVDB
000841856 980__ $$aI:(DE-Juel1)PGI-7-20110106
000841856 980__ $$aI:(DE-82)080009_20140620
000841856 980__ $$aUNRESTRICTED