000841856 001__ 841856 000841856 005__ 20210129232111.0 000841856 0247_ $$2doi$$a10.1039/C7CP07441G 000841856 0247_ $$2ISSN$$a1463-9076 000841856 0247_ $$2ISSN$$a1463-9084 000841856 0247_ $$2pmid$$apmid:29234759 000841856 0247_ $$2WOS$$aWOS:000419219700029 000841856 037__ $$aFZJ-2018-00154 000841856 082__ $$a540 000841856 1001_ $$0P:(DE-HGF)0$$aGries, U. N.$$b0 000841856 245__ $$aA SIMS study of cation and anion diffusion in tantalum oxide 000841856 260__ $$aCambridge$$bRSC Publ.$$c2018 000841856 3367_ $$2DRIVER$$aarticle 000841856 3367_ $$2DataCite$$aOutput Types/Journal article 000841856 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515392913_28987 000841856 3367_ $$2BibTeX$$aARTICLE 000841856 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000841856 3367_ $$00$$2EndNote$$aJournal Article 000841856 520__ $$aIon transport in ceramics of the low-temperature phase of tantalum pentoxide, L-Ta2O5, was examined by means of diffusion experiments and subsequent analysis of diffusion profiles with time-of-flight secondary ion mass spectrometry (ToF-SIMS). 18O/16O isotope anneals were used to investigate oxygen diffusion, and oxygen tracer diffusion coefficients were obtained for the temperature range of 623 ≤ T/K ≤ 873 at an oxygen partial pressure of pO2 = 0.2 bar and for the oxygen partial pressure range of 10−2 ≤ pO2/bar ≤ 100 at a temperature of T = 723 K. Cation diffusion in Ta2O5 was probed by using chemically similar niobium as the diffusant (in the absence of stable tantalum isotopes). Thin films of Nb2O5 were deposited onto Ta2O5 ceramics; diffusion anneals yielded niobium diffusion coefficients for the temperature range of 1073 ≤ T/K ≤ 1223 at an oxygen partial pressure of pO2 = 0.2 bar. Comparison of the measured diffusion coefficients strongly suggests that oxygen is many orders of magnitude more mobile than niobium in L-Ta2O5 at these temperatures and at pO2 = 0.2 bar. The electrical conductivity was also determined in the range 950 ≤ T/K ≤ 1200 and 10−23 ≤ pO2/bar ≤ 10−2. Considered together with the measured diffusion coefficients, the conductivity data indicate that under oxidising conditions conduction is due to oxygen ions above T = 1090–1130 K and due to electron holes below this temperature range. Point-defect models are presented that are consistent with these transport data and with conductivity data in the literature. They suggest that under oxidising conditions oxygen interstitials are the majority ionic charge carriers in L-Ta2O5. The implications for resistive switching devices are discussed. 000841856 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0 000841856 588__ $$aDataset connected to CrossRef 000841856 7001_ $$0P:(DE-HGF)0$$aSchraknepper, H.$$b1 000841856 7001_ $$0P:(DE-Juel1)145428$$aSkaja, K.$$b2 000841856 7001_ $$0P:(DE-Juel1)130677$$aGunkel, F.$$b3 000841856 7001_ $$0P:(DE-Juel1)130717$$aHoffmann-Eifert, S.$$b4 000841856 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b5 000841856 7001_ $$00000-0001-7721-4128$$aDe Souza, R. A.$$b6$$eCorresponding author 000841856 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C7CP07441G$$gVol. 20, no. 2, p. 989 - 996$$n2$$p989 - 996$$tPhysical chemistry, chemical physics$$v20$$x1463-9084$$y2018 000841856 8564_ $$uhttps://juser.fz-juelich.de/record/841856/files/c7cp07441g.pdf$$yRestricted 000841856 8564_ $$uhttps://juser.fz-juelich.de/record/841856/files/c7cp07441g.gif?subformat=icon$$xicon$$yRestricted 000841856 8564_ $$uhttps://juser.fz-juelich.de/record/841856/files/c7cp07441g.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000841856 8564_ $$uhttps://juser.fz-juelich.de/record/841856/files/c7cp07441g.jpg?subformat=icon-180$$xicon-180$$yRestricted 000841856 8564_ $$uhttps://juser.fz-juelich.de/record/841856/files/c7cp07441g.jpg?subformat=icon-640$$xicon-640$$yRestricted 000841856 8564_ $$uhttps://juser.fz-juelich.de/record/841856/files/c7cp07441g.pdf?subformat=pdfa$$xpdfa$$yRestricted 000841856 909CO $$ooai:juser.fz-juelich.de:841856$$pVDB 000841856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b3$$kFZJ 000841856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130717$$aForschungszentrum Jülich$$b4$$kFZJ 000841856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b5$$kFZJ 000841856 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0 000841856 9141_ $$y2018 000841856 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG 000841856 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000841856 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2015 000841856 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000841856 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000841856 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000841856 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000841856 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000841856 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000841856 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000841856 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000841856 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000841856 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0 000841856 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 000841856 980__ $$ajournal 000841856 980__ $$aVDB 000841856 980__ $$aI:(DE-Juel1)PGI-7-20110106 000841856 980__ $$aI:(DE-82)080009_20140620 000841856 980__ $$aUNRESTRICTED