000841995 001__ 841995
000841995 005__ 20210129232136.0
000841995 0247_ $$2doi$$a10.1088/1361-648X/aaa31e
000841995 0247_ $$2ISSN$$a0953-8984
000841995 0247_ $$2ISSN$$a1361-648X
000841995 0247_ $$2pmid$$apmid:29260731
000841995 0247_ $$2WOS$$aWOS:000419799000001
000841995 0247_ $$2altmetric$$aaltmetric:25084119
000841995 0247_ $$2Handle$$a2128/22986
000841995 037__ $$aFZJ-2018-00279
000841995 082__ $$a530
000841995 1001_ $$0P:(DE-Juel1)162163$$aLüpke, Felix$$b0
000841995 245__ $$aFour-point probe measurements using current probes with voltage feedback to measure electric potentials
000841995 260__ $$aBristol$$bIOP Publ.$$c2018
000841995 3367_ $$2DRIVER$$aarticle
000841995 3367_ $$2DataCite$$aOutput Types/Journal article
000841995 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515571720_18133
000841995 3367_ $$2BibTeX$$aARTICLE
000841995 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000841995 3367_ $$00$$2EndNote$$aJournal Article
000841995 520__ $$aWe present a four-point probe resistance measurement technique which uses four equivalent current measuring units, resulting in minimal hardware requirements and corresponding sources of noise. Local sample potentials are measured by a software feedback loop which adjusts the corresponding tip voltage such that no current flows to the sample. The resulting tip voltage is then equivalent to the sample potential at the tip position. We implement this measurement method into a multi-tip scanning tunneling microscope setup such that potentials can also be measured in tunneling contact, allowing in principle truly non-invasive four-probe measurements. The resulting measurement capabilities are demonstrated for $ \newcommand{\BiTe}{{\rm BiSbTe_3}} \BiTe$ and $ \newcommand{\Si}{{\rm Si(1\,1\,1)-(7\times7)}} \Si$ samples.
000841995 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000841995 588__ $$aDataset connected to CrossRef
000841995 7001_ $$00000-0001-9000-9487$$aCuma, David$$b1
000841995 7001_ $$0P:(DE-Juel1)138943$$aKorte, Stefan$$b2
000841995 7001_ $$0P:(DE-Juel1)128762$$aCherepanov, Vasily$$b3
000841995 7001_ $$0P:(DE-Juel1)128794$$aVoigtländer, Bert$$b4$$eCorresponding author
000841995 770__ $$aSpecial Issue on Multi-Probe Techniques
000841995 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/1361-648X/aaa31e$$gVol. 30, no. 5, p. 054004 -$$n5$$p054004-1 - 054004-7$$tJournal of physics / Condensed matter$$v30$$x1361-648X$$y2018
000841995 8564_ $$uhttps://juser.fz-juelich.de/record/841995/files/L%C3%BCpke_2018_J._Phys.__Condens._Matter_30_054004.pdf$$yRestricted
000841995 8564_ $$uhttps://juser.fz-juelich.de/record/841995/files/L%C3%BCpke_2018_J._Phys.__Condens._Matter_30_054004.pdf?subformat=pdfa$$xpdfa$$yRestricted
000841995 8564_ $$uhttps://juser.fz-juelich.de/record/841995/files/1709.02383.pdf$$yOpenAccess
000841995 8564_ $$uhttps://juser.fz-juelich.de/record/841995/files/1709.02383.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000841995 909CO $$ooai:juser.fz-juelich.de:841995$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000841995 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162163$$aForschungszentrum Jülich$$b0$$kFZJ
000841995 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138943$$aForschungszentrum Jülich$$b2$$kFZJ
000841995 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128762$$aForschungszentrum Jülich$$b3$$kFZJ
000841995 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128794$$aForschungszentrum Jülich$$b4$$kFZJ
000841995 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000841995 9141_ $$y2018
000841995 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000841995 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2015
000841995 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000841995 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000841995 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000841995 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000841995 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000841995 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000841995 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000841995 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000841995 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000841995 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000841995 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000841995 920__ $$lyes
000841995 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000841995 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000841995 980__ $$ajournal
000841995 980__ $$aVDB
000841995 980__ $$aUNRESTRICTED
000841995 980__ $$aI:(DE-Juel1)PGI-3-20110106
000841995 980__ $$aI:(DE-82)080009_20140620
000841995 9801_ $$aFullTexts