000842037 001__ 842037
000842037 005__ 20240712100836.0
000842037 0247_ $$2doi$$a10.5194/amt-2017-424
000842037 0247_ $$2Handle$$a2128/16492
000842037 0247_ $$2altmetric$$aaltmetric:29756348
000842037 037__ $$aFZJ-2018-00321
000842037 082__ $$a550
000842037 1001_ $$0P:(DE-Juel1)167408$$aSong, Rui$$b0$$eCorresponding author$$ufzj
000842037 245__ $$a3-D tomographic reconstruction of atmospheric gravity waves in the mesosphere and lower thermosphere (MLT)
000842037 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2017
000842037 3367_ $$2DRIVER$$aarticle
000842037 3367_ $$2DataCite$$aOutput Types/Journal article
000842037 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1530620163_8952
000842037 3367_ $$2BibTeX$$aARTICLE
000842037 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842037 3367_ $$00$$2EndNote$$aJournal Article
000842037 520__ $$aGravity waves (GWs) have been intensively studied over recent decades because of their dominant role in the dynamics of the mesosphere and lower thermosphere (MLT). The momentum deposition caused by breaking GWs determines the basic structure and drives the large-scale circulation in the MLT. Satellite observations provide a way to qualify the properties and effects of GWs on a global scale. As GWs can propagate vertically and horizontally in the atmosphere, resolving both horizontal and vertical wavelengths is important for the quantification of a wave. However, this can hardly be achieved by one instrument with a good spatial coverage and resolution. In this paper, we propose a new observation strategy, called "sweep mode", for a real three-dimensional (3-D) tomographic reconstruction of GWs in the MLT by modifying the observation geometry of conventional limb sounding measurements. It enhances the horizontal resolution that typical limb sounders can achieve, while at the same time retaining the good vertical resolution they have. This observation strategy is simulated for retrieving temperatures from measurements of the rotational structure of the O2 A-band airglow. The idea of this observation strategy is to sweep the line-of-sight (LOS) of the limb sounder horizontally across the orbital track during the flight. Therefore, two-dimensional (2-D) slices, i.e. vertical planes, that reveal the projection of GWs can be observed in the direction along- and across the orbital track, respectively. The 3-D wave vector is then reproduced by combining the projected 2-D wave slices in the two directions. The feasibility of this "sweep mode" tomographic retrieval approach is assessed using simulated measurements. It shows that the horizontal resolution in both along- and across-track directions are affected by an adjustable turning angle, which also determines the spatial coverage of this observation mode. The retrieval results can reduce the errors in deducing momentum flux substantially by providing an unbiased estimation of the real horizontal wavelength of a wave.
000842037 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000842037 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000842037 588__ $$aDataset connected to CrossRef
000842037 7001_ $$0P:(DE-Juel1)129128$$aKaufmann, Martin$$b1$$ufzj
000842037 7001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b2
000842037 7001_ $$00000-0001-9095-8332$$aUngermann, Jörn$$b3
000842037 7001_ $$0P:(DE-HGF)0$$aLiu, Guang$$b4
000842037 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b5$$ufzj
000842037 773__ $$0PERI:(DE-600)2507817-3$$a10.5194/amt-2017-424$$gp. 1 - 25$$p1 - 25$$tAtmospheric measurement techniques discussions$$v424$$x1867-8610$$y2017
000842037 8564_ $$uhttps://juser.fz-juelich.de/record/842037/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.pdf
000842037 8564_ $$uhttps://juser.fz-juelich.de/record/842037/files/amt-2017-424.pdf$$yOpenAccess
000842037 8564_ $$uhttps://juser.fz-juelich.de/record/842037/files/amt-2017-424.gif?subformat=icon$$xicon$$yOpenAccess
000842037 8564_ $$uhttps://juser.fz-juelich.de/record/842037/files/amt-2017-424.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000842037 8564_ $$uhttps://juser.fz-juelich.de/record/842037/files/amt-2017-424.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000842037 8564_ $$uhttps://juser.fz-juelich.de/record/842037/files/amt-2017-424.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000842037 8564_ $$uhttps://juser.fz-juelich.de/record/842037/files/amt-2017-424.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000842037 8564_ $$uhttps://juser.fz-juelich.de/record/842037/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.gif?subformat=icon$$xicon
000842037 8564_ $$uhttps://juser.fz-juelich.de/record/842037/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-1440$$xicon-1440
000842037 8564_ $$uhttps://juser.fz-juelich.de/record/842037/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-180$$xicon-180
000842037 8564_ $$uhttps://juser.fz-juelich.de/record/842037/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.jpg?subformat=icon-640$$xicon-640
000842037 8564_ $$uhttps://juser.fz-juelich.de/record/842037/files/invoice_Helmholtz-PUC-2018-22%20%28002%29.pdf?subformat=pdfa$$xpdfa
000842037 8767_ $$8Helmholtz-PUC-2018-22$$92018-07-02$$d2018-07-03$$eAPC$$jZahlung erfolgt$$pamt-2017-424
000842037 909CO $$ooai:juser.fz-juelich.de:842037$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000842037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167408$$aForschungszentrum Jülich$$b0$$kFZJ
000842037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129128$$aForschungszentrum Jülich$$b1$$kFZJ
000842037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b2$$kFZJ
000842037 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b5$$kFZJ
000842037 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000842037 9141_ $$y2017
000842037 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000842037 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000842037 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000842037 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000842037 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000842037 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000842037 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000842037 9801_ $$aFullTexts
000842037 980__ $$ajournal
000842037 980__ $$aVDB
000842037 980__ $$aI:(DE-Juel1)IEK-7-20101013
000842037 980__ $$aUNRESTRICTED
000842037 980__ $$aAPC
000842037 981__ $$aI:(DE-Juel1)ICE-4-20101013