Journal Article FZJ-2018-00321

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
3-D tomographic reconstruction of atmospheric gravity waves in the mesosphere and lower thermosphere (MLT)

 ;  ;  ;  ;  ;

2017
Copernicus Katlenburg-Lindau

Atmospheric measurement techniques discussions 424, 1 - 25 () [10.5194/amt-2017-424]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Gravity waves (GWs) have been intensively studied over recent decades because of their dominant role in the dynamics of the mesosphere and lower thermosphere (MLT). The momentum deposition caused by breaking GWs determines the basic structure and drives the large-scale circulation in the MLT. Satellite observations provide a way to qualify the properties and effects of GWs on a global scale. As GWs can propagate vertically and horizontally in the atmosphere, resolving both horizontal and vertical wavelengths is important for the quantification of a wave. However, this can hardly be achieved by one instrument with a good spatial coverage and resolution. In this paper, we propose a new observation strategy, called "sweep mode", for a real three-dimensional (3-D) tomographic reconstruction of GWs in the MLT by modifying the observation geometry of conventional limb sounding measurements. It enhances the horizontal resolution that typical limb sounders can achieve, while at the same time retaining the good vertical resolution they have. This observation strategy is simulated for retrieving temperatures from measurements of the rotational structure of the O2 A-band airglow. The idea of this observation strategy is to sweep the line-of-sight (LOS) of the limb sounder horizontally across the orbital track during the flight. Therefore, two-dimensional (2-D) slices, i.e. vertical planes, that reveal the projection of GWs can be observed in the direction along- and across the orbital track, respectively. The 3-D wave vector is then reproduced by combining the projected 2-D wave slices in the two directions. The feasibility of this "sweep mode" tomographic retrieval approach is assessed using simulated measurements. It shows that the horizontal resolution in both along- and across-track directions are affected by an adjustable turning angle, which also determines the spatial coverage of this observation mode. The retrieval results can reduce the errors in deducing momentum flux substantially by providing an unbiased estimation of the real horizontal wavelength of a wave.

Classification:

Contributing Institute(s):
  1. Stratosphäre (IEK-7)
Research Program(s):
  1. 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244) (POF3-244)
  2. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2017
Database coverage:
Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; DOAJ Seal ; Ebsco Academic Search
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ICE > ICE-4
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-7
Publications database
Open Access

 Record created 2018-01-10, last modified 2024-07-12