000842401 001__ 842401
000842401 005__ 20210129232317.0
000842401 0247_ $$2doi$$a10.1002/2017JD027620
000842401 0247_ $$2ISSN$$a0148-0227
000842401 0247_ $$2ISSN$$a2156-2202
000842401 0247_ $$2ISSN$$a2169-897X
000842401 0247_ $$2ISSN$$a2169-8996
000842401 0247_ $$2WOS$$aWOS:000425520200010
000842401 0247_ $$2Handle$$a2128/20372
000842401 037__ $$aFZJ-2018-00637
000842401 082__ $$a550
000842401 1001_ $$00000-0003-2495-3597$$aAlexander, M. J.$$b0$$eCorresponding author
000842401 245__ $$aMJO-Related Intraseasonal Variation in the Stratosphere: Gravity Waves and Zonal Winds
000842401 260__ $$aHoboken, NJ$$bWiley$$c2018
000842401 3367_ $$2DRIVER$$aarticle
000842401 3367_ $$2DataCite$$aOutput Types/Journal article
000842401 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1519744090_17494
000842401 3367_ $$2BibTeX$$aARTICLE
000842401 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842401 3367_ $$00$$2EndNote$$aJournal Article
000842401 520__ $$aPrevious work has shown eastward migrating regions of enhanced temperature variance due to long-vertical wavelength stratospheric gravity waves that are in sync with intraseasonal precipitation and tropopause wind anomalies associated with the Madden-Julian Oscillation (MJO). Here the origin of these intraseasonal gravity wave variations is investigated with a set of idealized gravity wave-resolving model experiments. The experiments specifically test whether tropopause winds act to control gravity wave propagation into the stratosphere by a critical level filtering mechanism or play a role in gravity wave generation through an obstacle source effect. All experiments use identical convective latent heating variability, but the large-scale horizontal wind profile is varied to investigate relationships between stratospheric gravity waves and zonal winds at different levels. Results show that the observed long vertical wavelength gravity waves are primarily sensitive to stratospheric zonal wind variations, while tropopause wind variations have only a very small effect. Thus, neither the critical level filter mechanism nor the obstacle source play much of a role in the observed intraseasonal gravity wave variations. Instead, the results suggest that the stratospheric waves follow the MJO precipitation sources, and tropopause wind anomalies follow the same sources. We further find evidence of intraseasonal wave drag effectson the stratospheric circulation in reanalyzed winds. The results suggest that waves drive intraseasonal stratospheric zonal wind anomalies that descend in altitude with increasing MJO phases 3 through 7. Eastward anomalies descend farther than westward, suggesting that MJO-related stratospheric wavescause larger eastward drag forces.
000842401 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000842401 588__ $$aDataset connected to CrossRef
000842401 7001_ $$00000-0002-9864-9224$$aGrimsdell, A. W.$$b1
000842401 7001_ $$00000-0001-5736-1948$$aStephan, C. C.$$b2
000842401 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, L.$$b3
000842401 773__ $$0PERI:(DE-600)2016800-7$$a10.1002/2017JD027620$$n2$$p775–788$$tJournal of geophysical research / Atmospheres$$v123$$x2169-897X$$y2018
000842401 8564_ $$uhttps://juser.fz-juelich.de/record/842401/files/2017JD027620.pdf$$yOpenAccess
000842401 8564_ $$uhttps://juser.fz-juelich.de/record/842401/files/2017JD027620.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000842401 909CO $$ooai:juser.fz-juelich.de:842401$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000842401 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b3$$kFZJ
000842401 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000842401 9141_ $$y2018
000842401 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000842401 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000842401 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000842401 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000842401 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000842401 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000842401 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000842401 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ GEOPHYS RES : 2015
000842401 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000842401 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000842401 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000842401 920__ $$lyes
000842401 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000842401 980__ $$ajournal
000842401 980__ $$aVDB
000842401 980__ $$aUNRESTRICTED
000842401 980__ $$aI:(DE-Juel1)JSC-20090406
000842401 9801_ $$aFullTexts