Journal Article FZJ-2018-00637

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
MJO-Related Intraseasonal Variation in the Stratosphere: Gravity Waves and Zonal Winds

 ;  ;  ;

2018
Wiley Hoboken, NJ

Journal of geophysical research / Atmospheres 123(2), 775–788 () [10.1002/2017JD027620]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Previous work has shown eastward migrating regions of enhanced temperature variance due to long-vertical wavelength stratospheric gravity waves that are in sync with intraseasonal precipitation and tropopause wind anomalies associated with the Madden-Julian Oscillation (MJO). Here the origin of these intraseasonal gravity wave variations is investigated with a set of idealized gravity wave-resolving model experiments. The experiments specifically test whether tropopause winds act to control gravity wave propagation into the stratosphere by a critical level filtering mechanism or play a role in gravity wave generation through an obstacle source effect. All experiments use identical convective latent heating variability, but the large-scale horizontal wind profile is varied to investigate relationships between stratospheric gravity waves and zonal winds at different levels. Results show that the observed long vertical wavelength gravity waves are primarily sensitive to stratospheric zonal wind variations, while tropopause wind variations have only a very small effect. Thus, neither the critical level filter mechanism nor the obstacle source play much of a role in the observed intraseasonal gravity wave variations. Instead, the results suggest that the stratospheric waves follow the MJO precipitation sources, and tropopause wind anomalies follow the same sources. We further find evidence of intraseasonal wave drag effectson the stratospheric circulation in reanalyzed winds. The results suggest that waves drive intraseasonal stratospheric zonal wind anomalies that descend in altitude with increasing MJO phases 3 through 7. Eastward anomalies descend farther than westward, suggesting that MJO-related stratospheric wavescause larger eastward drag forces.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)

Appears in the scientific report 2018
Database coverage:
Medline ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Workflow collections > Public records
Institute Collections > JSC
Publications database
Open Access

 Record created 2018-01-19, last modified 2021-01-29