000842481 001__ 842481
000842481 005__ 20210129232336.0
000842481 0247_ $$2doi$$a10.1103/PhysRevApplied.8.064028
000842481 0247_ $$2Handle$$a2128/16667
000842481 0247_ $$2WOS$$aWOS:000418665700004
000842481 0247_ $$2altmetric$$aaltmetric:21402134
000842481 037__ $$aFZJ-2018-00706
000842481 082__ $$a530
000842481 1001_ $$0P:(DE-Juel1)164373$$aHosseinkhani, A.$$b0$$ufzj
000842481 245__ $$aOptimal Configurations for Normal-Metal Traps in Transmon Qubits
000842481 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2017
000842481 3367_ $$2DRIVER$$aarticle
000842481 3367_ $$2DataCite$$aOutput Types/Journal article
000842481 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1516695483_21763
000842481 3367_ $$2BibTeX$$aARTICLE
000842481 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842481 3367_ $$00$$2EndNote$$aJournal Article
000842481 520__ $$aControlling quasiparticle dynamics can improve the performance of superconducting devices. For example, it has been demonstrated effective in increasing the lifetime and stability of superconducting qubits. Here we study how to optimize the placement of normal-metal traps in transmon-type qubits. When the trap size increases beyond a certain characteristic length, the details of the geometry and trap position, and even the number of traps, become important. We discuss for some experimentally relevant examples how to shorten the decay time of the excess quasiparticle density. Moreover, we show that a trap in the vicinity of a Josephson junction can significantly reduce the steady-state quasiparticle density near that junction, thus, suppressing the quasiparticle-induced relaxation rate of the qubit. Such a trap also reduces the impact of fluctuations in the generation rate of quasiparticles, rendering the qubit more stable.
000842481 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000842481 588__ $$aDataset connected to CrossRef
000842481 7001_ $$0P:(DE-Juel1)168366$$aRiwar, Roman$$b1$$ufzj
000842481 7001_ $$0P:(DE-HGF)0$$aSchoelkopf, R. J.$$b2
000842481 7001_ $$0P:(DE-HGF)0$$aGlazman, L. I.$$b3
000842481 7001_ $$0P:(DE-Juel1)151130$$aCatelani, Gianluigi$$b4$$eCorresponding author$$ufzj
000842481 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.8.064028$$gVol. 8, no. 6, p. 064028$$n6$$p064028$$tPhysical review applied$$v8$$x2331-7019$$y2017
000842481 8564_ $$uhttps://juser.fz-juelich.de/record/842481/files/PhysRevApplied.8.064028.pdf$$yOpenAccess
000842481 8564_ $$uhttps://juser.fz-juelich.de/record/842481/files/PhysRevApplied.8.064028.gif?subformat=icon$$xicon$$yOpenAccess
000842481 8564_ $$uhttps://juser.fz-juelich.de/record/842481/files/PhysRevApplied.8.064028.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000842481 8564_ $$uhttps://juser.fz-juelich.de/record/842481/files/PhysRevApplied.8.064028.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000842481 8564_ $$uhttps://juser.fz-juelich.de/record/842481/files/PhysRevApplied.8.064028.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000842481 8564_ $$uhttps://juser.fz-juelich.de/record/842481/files/PhysRevApplied.8.064028.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000842481 909CO $$ooai:juser.fz-juelich.de:842481$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000842481 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164373$$aForschungszentrum Jülich$$b0$$kFZJ
000842481 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168366$$aForschungszentrum Jülich$$b1$$kFZJ
000842481 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich$$b4$$kFZJ
000842481 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000842481 9141_ $$y2017
000842481 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000842481 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000842481 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2015
000842481 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000842481 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000842481 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000842481 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000842481 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000842481 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000842481 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000842481 920__ $$lyes
000842481 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
000842481 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x1
000842481 980__ $$ajournal
000842481 980__ $$aVDB
000842481 980__ $$aUNRESTRICTED
000842481 980__ $$aI:(DE-Juel1)PGI-11-20170113
000842481 980__ $$aI:(DE-Juel1)PGI-2-20110106
000842481 9801_ $$aFullTexts