000842487 001__ 842487
000842487 005__ 20210129232338.0
000842487 0247_ $$2doi$$a10.5194/acp-2017-538
000842487 0247_ $$2ISSN$$a1680-7367
000842487 0247_ $$2ISSN$$a1680-7375
000842487 0247_ $$2Handle$$a2128/16684
000842487 0247_ $$2altmetric$$aaltmetric:21118632
000842487 037__ $$aFZJ-2018-00712
000842487 082__ $$a550
000842487 1001_ $$0P:(DE-HGF)0$$aGünther, Annika$$b0$$eCorresponding author
000842487 245__ $$aMIPAS observations of volcanic sulphate aerosol and sulphur dioxide in the stratosphere
000842487 260__ $$aKatlenburg-Lindau$$bEGU$$c2017
000842487 3367_ $$2DRIVER$$aarticle
000842487 3367_ $$2DataCite$$aOutput Types/Journal article
000842487 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1516715583_21770
000842487 3367_ $$2BibTeX$$aARTICLE
000842487 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842487 3367_ $$00$$2EndNote$$aJournal Article
000842487 520__ $$aVolcanic eruptions can increase the stratospheric sulphur content by orders of magnitude above the background level and are the most important source of variability of stratospheric sulphur loading. We present a set of vertical profiles of sulphate aerosol volume densities and derived liquid-phase H2SO4 mole-fractions for 2005–2012, retrieved from infrared limb emission measurements by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board of the Environmental Satellite. The MIPAS aerosol dataset has been corrected for a possible altitude-dependent bias by comparison with balloon-borne in situ aerosol measurements at Laramie, Wyoming. The MIPAS data of stratospheric sulphate aerosol is linked to MIPAS observations of sulphur dioxide (SO2) with the help of Chemical Transport Model simulations. We investigate the production of sulphate aerosol and its fate from volcanically emitted SO2 for two volcanic case studies: the eruptions of Kasatochi in 2008 and Sarychev in 2009, which both occurred in the Northern Hemisphere mid-latitudes during boreal summer. We show that the MIPAS sulphate aerosol and SO2 data are qualitatively and quantitatively consistent to each other. Further, we demonstrate that the lifetime of SO2 is well described by its oxidation by hydroxyl radicals. While sedimentation of the sulphate aerosol plays a role, we find that the dominant mechanism controlling the stratospheric lifetime of sulphur after these volcanic eruptions at mid-latitudes is transport in the Brewer-Dobson circulation. Sulphur emitted by the two mid-latitude volcanoes resides mostly north of 30° N at altitudes of ~ 10–16 km, while at higher altitudes (~ 18–22 km) part of the volcanic sulphur is transported towards the equator where it is lifted into the stratospheric "overworld" and can further be transported into both hemispheres.
000842487 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000842487 588__ $$aDataset connected to CrossRef
000842487 7001_ $$00000-0002-4174-9531$$aHöpfner, Michael$$b1
000842487 7001_ $$0P:(DE-HGF)0$$aSinnhuber, Björn-Martin$$b2
000842487 7001_ $$0P:(DE-Juel1)129121$$aGriessbach, Sabine$$b3$$ufzj
000842487 7001_ $$0P:(DE-HGF)0$$aDeshler, Terry$$b4
000842487 7001_ $$0P:(DE-HGF)0$$avon Clarmann, Thomas$$b5
000842487 7001_ $$00000-0003-2883-6873$$aStiller, Gabriele$$b6
000842487 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acp-2017-538$$gp. 1 - 32$$p1 - 32$$tAtmospheric chemistry and physics / Discussions$$v538$$x1680-7367$$y2017
000842487 8564_ $$uhttps://juser.fz-juelich.de/record/842487/files/acp-2017-538.pdf$$yOpenAccess
000842487 8564_ $$uhttps://juser.fz-juelich.de/record/842487/files/acp-2017-538.gif?subformat=icon$$xicon$$yOpenAccess
000842487 8564_ $$uhttps://juser.fz-juelich.de/record/842487/files/acp-2017-538.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000842487 8564_ $$uhttps://juser.fz-juelich.de/record/842487/files/acp-2017-538.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000842487 8564_ $$uhttps://juser.fz-juelich.de/record/842487/files/acp-2017-538.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000842487 8564_ $$uhttps://juser.fz-juelich.de/record/842487/files/acp-2017-538.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000842487 909CO $$ooai:juser.fz-juelich.de:842487$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000842487 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129121$$aForschungszentrum Jülich$$b3$$kFZJ
000842487 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000842487 9141_ $$y2017
000842487 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000842487 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000842487 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000842487 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000842487 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000842487 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000842487 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000842487 980__ $$ajournal
000842487 980__ $$aVDB
000842487 980__ $$aUNRESTRICTED
000842487 980__ $$aI:(DE-Juel1)JSC-20090406
000842487 9801_ $$aFullTexts