Journal Article FZJ-2018-00712

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
MIPAS observations of volcanic sulphate aerosol and sulphur dioxide in the stratosphere

 ;  ;  ;  ;  ;  ;

2017
EGU Katlenburg-Lindau

Atmospheric chemistry and physics / Discussions 538, 1 - 32 () [10.5194/acp-2017-538]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Volcanic eruptions can increase the stratospheric sulphur content by orders of magnitude above the background level and are the most important source of variability of stratospheric sulphur loading. We present a set of vertical profiles of sulphate aerosol volume densities and derived liquid-phase H2SO4 mole-fractions for 2005–2012, retrieved from infrared limb emission measurements by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board of the Environmental Satellite. The MIPAS aerosol dataset has been corrected for a possible altitude-dependent bias by comparison with balloon-borne in situ aerosol measurements at Laramie, Wyoming. The MIPAS data of stratospheric sulphate aerosol is linked to MIPAS observations of sulphur dioxide (SO2) with the help of Chemical Transport Model simulations. We investigate the production of sulphate aerosol and its fate from volcanically emitted SO2 for two volcanic case studies: the eruptions of Kasatochi in 2008 and Sarychev in 2009, which both occurred in the Northern Hemisphere mid-latitudes during boreal summer. We show that the MIPAS sulphate aerosol and SO2 data are qualitatively and quantitatively consistent to each other. Further, we demonstrate that the lifetime of SO2 is well described by its oxidation by hydroxyl radicals. While sedimentation of the sulphate aerosol plays a role, we find that the dominant mechanism controlling the stratospheric lifetime of sulphur after these volcanic eruptions at mid-latitudes is transport in the Brewer-Dobson circulation. Sulphur emitted by the two mid-latitude volcanoes resides mostly north of 30° N at altitudes of ~ 10–16 km, while at higher altitudes (~ 18–22 km) part of the volcanic sulphur is transported towards the equator where it is lifted into the stratospheric "overworld" and can further be transported into both hemispheres.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)

Appears in the scientific report 2017
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; DOAJ Seal ; NCBI Molecular Biology Database
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Workflow collections > Public records
Institute Collections > JSC
Publications database
Open Access

 Record created 2018-01-23, last modified 2021-01-29