001     842487
005     20210129232338.0
024 7 _ |a 10.5194/acp-2017-538
|2 doi
024 7 _ |a 1680-7367
|2 ISSN
024 7 _ |a 1680-7375
|2 ISSN
024 7 _ |a 2128/16684
|2 Handle
024 7 _ |a altmetric:21118632
|2 altmetric
037 _ _ |a FZJ-2018-00712
082 _ _ |a 550
100 1 _ |a Günther, Annika
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a MIPAS observations of volcanic sulphate aerosol and sulphur dioxide in the stratosphere
260 _ _ |a Katlenburg-Lindau
|c 2017
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1516715583_21770
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Volcanic eruptions can increase the stratospheric sulphur content by orders of magnitude above the background level and are the most important source of variability of stratospheric sulphur loading. We present a set of vertical profiles of sulphate aerosol volume densities and derived liquid-phase H2SO4 mole-fractions for 2005–2012, retrieved from infrared limb emission measurements by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board of the Environmental Satellite. The MIPAS aerosol dataset has been corrected for a possible altitude-dependent bias by comparison with balloon-borne in situ aerosol measurements at Laramie, Wyoming. The MIPAS data of stratospheric sulphate aerosol is linked to MIPAS observations of sulphur dioxide (SO2) with the help of Chemical Transport Model simulations. We investigate the production of sulphate aerosol and its fate from volcanically emitted SO2 for two volcanic case studies: the eruptions of Kasatochi in 2008 and Sarychev in 2009, which both occurred in the Northern Hemisphere mid-latitudes during boreal summer. We show that the MIPAS sulphate aerosol and SO2 data are qualitatively and quantitatively consistent to each other. Further, we demonstrate that the lifetime of SO2 is well described by its oxidation by hydroxyl radicals. While sedimentation of the sulphate aerosol plays a role, we find that the dominant mechanism controlling the stratospheric lifetime of sulphur after these volcanic eruptions at mid-latitudes is transport in the Brewer-Dobson circulation. Sulphur emitted by the two mid-latitude volcanoes resides mostly north of 30° N at altitudes of ~ 10–16 km, while at higher altitudes (~ 18–22 km) part of the volcanic sulphur is transported towards the equator where it is lifted into the stratospheric "overworld" and can further be transported into both hemispheres.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Höpfner, Michael
|0 0000-0002-4174-9531
|b 1
700 1 _ |a Sinnhuber, Björn-Martin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Griessbach, Sabine
|0 P:(DE-Juel1)129121
|b 3
|u fzj
700 1 _ |a Deshler, Terry
|0 P:(DE-HGF)0
|b 4
700 1 _ |a von Clarmann, Thomas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Stiller, Gabriele
|0 0000-0003-2883-6873
|b 6
773 _ _ |a 10.5194/acp-2017-538
|g p. 1 - 32
|0 PERI:(DE-600)2069857-4
|p 1 - 32
|t Atmospheric chemistry and physics / Discussions
|v 538
|y 2017
|x 1680-7367
856 4 _ |u https://juser.fz-juelich.de/record/842487/files/acp-2017-538.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/842487/files/acp-2017-538.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/842487/files/acp-2017-538.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/842487/files/acp-2017-538.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/842487/files/acp-2017-538.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/842487/files/acp-2017-538.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:842487
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129121
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2017
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21