000842507 001__ 842507
000842507 005__ 20240313103117.0
000842507 0247_ $$2arXiv$$aarXiv:1706.05702
000842507 0247_ $$2doi$$a10.3389/fninf.2017.00075
000842507 0247_ $$2Handle$$a2128/16676
000842507 0247_ $$2WOS$$aWOS:000419441000001
000842507 0247_ $$2altmetric$$aaltmetric:21183416
000842507 0247_ $$2pmid$$apmid:29379430
000842507 037__ $$aFZJ-2018-00732
000842507 041__ $$aEnglish
000842507 082__ $$a610
000842507 1001_ $$0P:(DE-Juel1)164187$$aKrishnan, Jeyashree$$b0$$eCorresponding author
000842507 245__ $$aPerfect Detection of Spikes in the Linear Sub-threshold Dynamics of Point Neurons
000842507 260__ $$aLausanne$$bFrontiers Research Foundation$$c2018
000842507 3367_ $$2DRIVER$$aarticle
000842507 3367_ $$2DataCite$$aOutput Types/Journal article
000842507 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669388194_20903
000842507 3367_ $$2BibTeX$$aARTICLE
000842507 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000842507 3367_ $$00$$2EndNote$$aJournal Article
000842507 520__ $$aSpiking neuronal networks are usually simulated with three main simulation schemes: the classical time-driven and event-driven schemes, and the more recent hybrid scheme. All three schemes evolve the state of a neuron through a series of checkpoints: equally spaced in the first scheme and determined neuron-wise by spike events in the latter two. The time-driven and the hybrid scheme determine whether the membrane potential of a neuron crosses a threshold at the end of of the time interval between consecutive checkpoints. Threshold crossing can, however, occur within the interval even if this test is negative. Spikes can therefore be missed. The present work derives, implements, and benchmarks a method for perfect retrospective spike detection. This method can be applied to neuron models with affine or linear subthreshold dynamics. The idea behind the method is to propagate the threshold with a time-inverted dynamics, testing whether the threshold crosses the neuron state to be evolved, rather than vice versa. Algebraically this translates into a set of inequalities necessary and sufficient for threshold crossing. This test is slower than the imperfect one, but faster than an alternative perfect tests based on bisection or root-finding methods. Comparison confirms earlier results that the imperfect test rarely misses spikes (less than a fraction $1/10^8$ of missed spikes) in biologically relevant settings. This study offers an alternative geometric point of view on neuronal dynamics.
000842507 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000842507 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1
000842507 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x2
000842507 536__ $$0G:(DE-Juel1)HGF-SMHB-2014-2018$$aMSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)$$cHGF-SMHB-2014-2018$$fMSNN$$x3
000842507 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x4
000842507 536__ $$0G:(DE-Juel1)SDLQM$$aSimulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)$$cSDLQM$$fSimulation and Data Laboratory Quantum Materials (SDLQM)$$x5
000842507 588__ $$aDataset connected to arXivarXiv
000842507 7001_ $$0P:(DE-Juel1)165939$$aMana, PierGianLuca$$b1
000842507 7001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b2
000842507 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b3
000842507 7001_ $$0P:(DE-Juel1)144723$$aDi Napoli, Edoardo$$b4
000842507 773__ $$0PERI:(DE-600)2452979-5$$a10.3389/fninf.2017.00075$$p75$$tFrontiers in neuroinformatics$$v11$$x1662-5196$$y2018
000842507 8564_ $$uhttps://juser.fz-juelich.de/record/842507/files/fninf-11-00075.pdf$$yOpenAccess
000842507 8564_ $$uhttps://juser.fz-juelich.de/record/842507/files/fninf-11-00075.gif?subformat=icon$$xicon$$yOpenAccess
000842507 8564_ $$uhttps://juser.fz-juelich.de/record/842507/files/fninf-11-00075.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000842507 8564_ $$uhttps://juser.fz-juelich.de/record/842507/files/fninf-11-00075.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000842507 8564_ $$uhttps://juser.fz-juelich.de/record/842507/files/fninf-11-00075.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000842507 8564_ $$uhttps://juser.fz-juelich.de/record/842507/files/fninf-11-00075.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000842507 8767_ $$92018-01-04$$d2018-01-08$$eAPC$$jDeposit$$lDeposit: Frontiers$$p2017-0088881-0-PF$$zUSD 2241,-
000842507 909CO $$ooai:juser.fz-juelich.de:842507$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000842507 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164187$$aForschungszentrum Jülich$$b0$$kFZJ
000842507 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich$$b2$$kFZJ
000842507 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b3$$kFZJ
000842507 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144723$$aForschungszentrum Jülich$$b4$$kFZJ
000842507 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000842507 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000842507 9141_ $$y2018
000842507 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000842507 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000842507 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000842507 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROINFORM : 2015
000842507 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000842507 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000842507 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000842507 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000842507 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000842507 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000842507 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000842507 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000842507 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x0
000842507 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x1
000842507 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000842507 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x3
000842507 9801_ $$aAPC
000842507 9801_ $$aFullTexts
000842507 980__ $$ajournal
000842507 980__ $$aVDB
000842507 980__ $$aI:(DE-Juel1)IAS-6-20130828
000842507 980__ $$aI:(DE-Juel1)INM-6-20090406
000842507 980__ $$aI:(DE-Juel1)INM-10-20170113
000842507 980__ $$aI:(DE-Juel1)JSC-20090406
000842507 980__ $$aAPC
000842507 980__ $$aUNRESTRICTED
000842507 981__ $$aI:(DE-Juel1)IAS-6-20130828