000842888 001__ 842888 000842888 005__ 20210129232512.0 000842888 0247_ $$2doi$$a10.1103/PhysRevApplied.7.024030 000842888 0247_ $$2arXiv$$aarXiv:1609.06543 000842888 0247_ $$2Handle$$a2128/16983 000842888 0247_ $$2WOS$$aWOS:000396060500003 000842888 0247_ $$2altmetric$$aaltmetric:12128327 000842888 037__ $$aFZJ-2018-01061 000842888 082__ $$a530 000842888 1001_ $$0P:(DE-HGF)0$$aBosco, S.$$b0 000842888 245__ $$aSelf-Impedance-Matched Hall-Effect Gyrators and Circulators 000842888 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2017 000842888 3367_ $$2DRIVER$$aarticle 000842888 3367_ $$2DataCite$$aOutput Types/Journal article 000842888 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1517486679_8241 000842888 3367_ $$2BibTeX$$aARTICLE 000842888 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000842888 3367_ $$00$$2EndNote$$aJournal Article 000842888 520__ $$aWe present a model study of an alternative implementation of a two-port Hall-effect microwave gyrator. Our set-up involves three electrodes, one of which acts as a common ground for the others. Based on the capacitive-coupling model of Viola and DiVincenzo, we analyze the performance of the device and we predict that ideal gyration can be achieved at specific frequencies. Interestingly, the impedance of the three-terminal gyrator can be made arbitrarily small for certain coupling strengths, so that no auxiliary impedance matching is required. Although the bandwidth of the device shrinks as the impedance decreases, it can be improved by reducing the magnetic field; it can be realistically increased up to $ 150 \mathrm{MHz}$ at $50\mathrm{\Omega}$ by working at filling factor $\nu=10$. We examine also the effects of the parasitic capacitive coupling between electrodes and we find that, although in general they strongly influence the response of device, their effect is negligible at low impedance. Finally, we analyze an interferometric implementation of a circulator, which incorporates the gyrator in a Mach-Zender-like construction. Perfect circulation in both directions can be achieved, depending on frequency and on the details of the interferometer. 000842888 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0 000842888 588__ $$aDataset connected to arXivarXiv, CrossRef 000842888 7001_ $$0P:(DE-Juel1)173003$$aHaupt, F.$$b1$$ufzj 000842888 7001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, David$$b2$$eCorresponding author$$ufzj 000842888 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.7.024030$$gVol. 7, no. 2, p. 024030$$n2$$p024030$$tPhysical review applied$$v7$$x2331-7019$$y2017 000842888 8564_ $$uhttps://juser.fz-juelich.de/record/842888/files/PhysRevApplied.7.024030.pdf$$yOpenAccess 000842888 8564_ $$uhttps://juser.fz-juelich.de/record/842888/files/PhysRevApplied.7.024030.gif?subformat=icon$$xicon$$yOpenAccess 000842888 8564_ $$uhttps://juser.fz-juelich.de/record/842888/files/PhysRevApplied.7.024030.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000842888 8564_ $$uhttps://juser.fz-juelich.de/record/842888/files/PhysRevApplied.7.024030.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000842888 8564_ $$uhttps://juser.fz-juelich.de/record/842888/files/PhysRevApplied.7.024030.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000842888 8564_ $$uhttps://juser.fz-juelich.de/record/842888/files/PhysRevApplied.7.024030.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000842888 909CO $$ooai:juser.fz-juelich.de:842888$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000842888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173003$$aForschungszentrum Jülich$$b1$$kFZJ 000842888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich$$b2$$kFZJ 000842888 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0 000842888 9141_ $$y2017 000842888 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000842888 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000842888 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2015 000842888 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000842888 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000842888 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000842888 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000842888 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000842888 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000842888 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000842888 920__ $$lyes 000842888 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0 000842888 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x1 000842888 980__ $$ajournal 000842888 980__ $$aVDB 000842888 980__ $$aUNRESTRICTED 000842888 980__ $$aI:(DE-Juel1)PGI-2-20110106 000842888 980__ $$aI:(DE-Juel1)PGI-11-20170113 000842888 9801_ $$aFullTexts