Journal Article FZJ-2018-01061

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Self-Impedance-Matched Hall-Effect Gyrators and Circulators

 ;  ;

2017
American Physical Society College Park, Md. [u.a.]

Physical review applied 7(2), 024030 () [10.1103/PhysRevApplied.7.024030]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: We present a model study of an alternative implementation of a two-port Hall-effect microwave gyrator. Our set-up involves three electrodes, one of which acts as a common ground for the others. Based on the capacitive-coupling model of Viola and DiVincenzo, we analyze the performance of the device and we predict that ideal gyration can be achieved at specific frequencies. Interestingly, the impedance of the three-terminal gyrator can be made arbitrarily small for certain coupling strengths, so that no auxiliary impedance matching is required. Although the bandwidth of the device shrinks as the impedance decreases, it can be improved by reducing the magnetic field; it can be realistically increased up to $ 150 \mathrm{MHz}$ at $50\mathrm{\Omega}$ by working at filling factor $\nu=10$. We examine also the effects of the parasitic capacitive coupling between electrodes and we find that, although in general they strongly influence the response of device, their effect is negligible at low impedance. Finally, we analyze an interferometric implementation of a circulator, which incorporates the gyrator in a Mach-Zender-like construction. Perfect circulation in both directions can be achieved, depending on frequency and on the details of the interferometer.

Classification:

Contributing Institute(s):
  1. Theoretische Nanoelektronik (PGI-2)
  2. JARA Institut Quanteninformation (PGI-11)
Research Program(s):
  1. 144 - Controlling Collective States (POF3-144) (POF3-144)

Appears in the scientific report 2017
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-11
Institute Collections > PGI > PGI-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2018-02-01, last modified 2021-01-29