| Hauptseite > Publikationsdatenbank > Self-Impedance-Matched Hall-Effect Gyrators and Circulators > print |
| 001 | 842888 | ||
| 005 | 20210129232512.0 | ||
| 024 | 7 | _ | |a 10.1103/PhysRevApplied.7.024030 |2 doi |
| 024 | 7 | _ | |a arXiv:1609.06543 |2 arXiv |
| 024 | 7 | _ | |a 2128/16983 |2 Handle |
| 024 | 7 | _ | |a WOS:000396060500003 |2 WOS |
| 024 | 7 | _ | |a altmetric:12128327 |2 altmetric |
| 037 | _ | _ | |a FZJ-2018-01061 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Bosco, S. |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Self-Impedance-Matched Hall-Effect Gyrators and Circulators |
| 260 | _ | _ | |a College Park, Md. [u.a.] |c 2017 |b American Physical Society |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1517486679_8241 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a We present a model study of an alternative implementation of a two-port Hall-effect microwave gyrator. Our set-up involves three electrodes, one of which acts as a common ground for the others. Based on the capacitive-coupling model of Viola and DiVincenzo, we analyze the performance of the device and we predict that ideal gyration can be achieved at specific frequencies. Interestingly, the impedance of the three-terminal gyrator can be made arbitrarily small for certain coupling strengths, so that no auxiliary impedance matching is required. Although the bandwidth of the device shrinks as the impedance decreases, it can be improved by reducing the magnetic field; it can be realistically increased up to $ 150 \mathrm{MHz}$ at $50\mathrm{\Omega}$ by working at filling factor $\nu=10$. We examine also the effects of the parasitic capacitive coupling between electrodes and we find that, although in general they strongly influence the response of device, their effect is negligible at low impedance. Finally, we analyze an interferometric implementation of a circulator, which incorporates the gyrator in a Mach-Zender-like construction. Perfect circulation in both directions can be achieved, depending on frequency and on the details of the interferometer. |
| 536 | _ | _ | |a 144 - Controlling Collective States (POF3-144) |0 G:(DE-HGF)POF3-144 |c POF3-144 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to arXivarXiv, CrossRef |
| 700 | 1 | _ | |a Haupt, F. |0 P:(DE-Juel1)173003 |b 1 |u fzj |
| 700 | 1 | _ | |a DiVincenzo, David |0 P:(DE-Juel1)143759 |b 2 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.1103/PhysRevApplied.7.024030 |g Vol. 7, no. 2, p. 024030 |0 PERI:(DE-600)2760310-6 |n 2 |p 024030 |t Physical review applied |v 7 |y 2017 |x 2331-7019 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/842888/files/PhysRevApplied.7.024030.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/842888/files/PhysRevApplied.7.024030.gif?subformat=icon |x icon |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/842888/files/PhysRevApplied.7.024030.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/842888/files/PhysRevApplied.7.024030.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/842888/files/PhysRevApplied.7.024030.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/842888/files/PhysRevApplied.7.024030.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:842888 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)173003 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)143759 |
| 913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-144 |2 G:(DE-HGF)POF3-100 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV APPL : 2015 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-2-20110106 |k PGI-2 |l Theoretische Nanoelektronik |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-11-20170113 |k PGI-11 |l JARA Institut Quanteninformation |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-11-20170113 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|