001     842909
005     20210129232520.0
024 7 _ |a 10.1016/j.compag.2017.04.015
|2 doi
024 7 _ |a 0168-1699
|2 ISSN
024 7 _ |a 1872-7107
|2 ISSN
024 7 _ |a WOS:000402360200008
|2 WOS
037 _ _ |a FZJ-2018-01082
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Agostini, Alejandro
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a A cognitive architecture for automatic gardening
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1517574910_13740
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In large industrial greenhouses, plants are usually treated following well established protocols for watering, nutrients, and shading/light. While this is practical for the automation of the process, it does not tap the full potential for optimal plant treatment. To more efficiently grow plants, specific treatments according to the plant individual needs should be applied. Experienced human gardeners are very good at treating plants individually. Unfortunately, hiring a crew of gardeners to carry out this task in large greenhouses is not cost effective. In this work we present a cognitive system that integrates artificial intelligence (AI) techniques for decision-making with robotics techniques for sensing and acting to autonomously treat plants using a real-robot platform. Artificial intelligence techniques are used to decide the amount of water and nutrients each plant needs according to the history of the plant. Robotic techniques for sensing measure plant attributes (e.g. leaves) from visual information using 3D model representations. These attributes are used by the AI system to make decisions about the treatment to apply. Acting techniques execute robot movements to supply the plants with the specified amount of water and nutrients.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Alenyà, Guillem
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Fischbach, Andreas
|0 P:(DE-Juel1)129315
|b 2
|u fzj
700 1 _ |a Scharr, Hanno
|0 P:(DE-Juel1)129394
|b 3
|u fzj
700 1 _ |a Wörgötter, Florentin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Torras, Carme
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.compag.2017.04.015
|g Vol. 138, p. 69 - 79
|0 PERI:(DE-600)2016151-7
|p 69 - 79
|t Computers and electronics in agriculture
|v 138
|y 2017
|x 0168-1699
856 4 _ |u https://juser.fz-juelich.de/record/842909/files/1-s2.0-S0168169916304768-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842909/files/1-s2.0-S0168169916304768-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842909/files/1-s2.0-S0168169916304768-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842909/files/1-s2.0-S0168169916304768-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842909/files/1-s2.0-S0168169916304768-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/842909/files/1-s2.0-S0168169916304768-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:842909
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129315
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129394
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT ELECTRON AGR : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21