Journal Article FZJ-2018-01082

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A cognitive architecture for automatic gardening

 ;  ;  ;  ;  ;

2017
Elsevier Science Amsterdam [u.a.]

Computers and electronics in agriculture 138, 69 - 79 () [10.1016/j.compag.2017.04.015]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: In large industrial greenhouses, plants are usually treated following well established protocols for watering, nutrients, and shading/light. While this is practical for the automation of the process, it does not tap the full potential for optimal plant treatment. To more efficiently grow plants, specific treatments according to the plant individual needs should be applied. Experienced human gardeners are very good at treating plants individually. Unfortunately, hiring a crew of gardeners to carry out this task in large greenhouses is not cost effective. In this work we present a cognitive system that integrates artificial intelligence (AI) techniques for decision-making with robotics techniques for sensing and acting to autonomously treat plants using a real-robot platform. Artificial intelligence techniques are used to decide the amount of water and nutrients each plant needs according to the history of the plant. Robotic techniques for sensing measure plant attributes (e.g. leaves) from visual information using 3D model representations. These attributes are used by the AI system to make decisions about the treatment to apply. Acting techniques execute robot movements to supply the plants with the specified amount of water and nutrients.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 582 - Plant Science (POF3-582) (POF3-582)

Appears in the scientific report 2017
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Agriculture, Biology and Environmental Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-2
Workflow collections > Public records
Publications database

 Record created 2018-02-01, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)