001     843739
005     20240708133137.0
024 7 _ |2 doi
|a 10.1016/j.ijhydene.2018.07.165
024 7 _ |2 ISSN
|a 0360-3199
024 7 _ |2 ISSN
|a 1879-3487
024 7 _ |2 WOS
|a WOS:000459236100002
037 _ _ |a FZJ-2018-01291
082 _ _ |a 660
100 1 _ |0 P:(DE-HGF)0
|a Grüger, F.
|b 0
|e Corresponding author
245 _ _ |a Optimized Electrolyzer Operation: Employing Forecasts of Wind Energy Availability, Hydrogen Demand, and Electricity Prices
260 _ _ |a New York, NY [u.a.]
|b Elsevier
|c 2019
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1559897786_27796
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a One of the main advantages of fuel cell based mobility over other sustainable mobility concepts is the flexible production of hydrogen via electrolysis. To date, it is unclear how electrolysis at hydrogen refueling stations should be operated in order to achieve the lowest possible costs despite the constraints of hydrogen demand. This study proposes and evaluates an intelligent operating strategy for electrolysis capable of exploiting times of low electricity prices while participating in the spot market and maximizing wind energy utilization when combined with a wind farm. This strategy is based on a simulation model considering imperfect forecasts (e.g. of wind availability or energy prices) and non-linear electrolyzer behavior. Results show that this approach reduces hydrogen production costs by up to 9.2% and increases wind energy utilization by up to 19%, respectively.
536 _ _ |0 G:(DE-HGF)POF3-134
|a 134 - Electrolysis and Hydrogen (POF3-134)
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Hoch, O.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Hartmann, M.
|b 2
700 1 _ |0 P:(DE-Juel1)156460
|a Robinius, Martin
|b 3
700 1 _ |0 P:(DE-Juel1)129928
|a Stolten, Detlef
|b 4
773 _ _ |0 PERI:(DE-600)1484487-4
|a 10.1016/j.ijhydene.2018.07.165
|g p. S0360319918324169
|n 9
|p 4387-4397
|t International journal of hydrogen energy
|v 44
|x 0360-3199
|y 2019
909 C O |o oai:juser.fz-juelich.de:843739
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)156460
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129928
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-Juel1)129928
|a RWTH Aachen
|b 4
|k RWTH
913 1 _ |0 G:(DE-HGF)POF3-134
|1 G:(DE-HGF)POF3-130
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b INT J HYDROGEN ENERG : 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21