Journal Article FZJ-2018-01318

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
In-situ two-phase flow investigation of different porous transport layer for a polymer electrolyte membrane (PEM) electrolyzer with neutron spectroscopy

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2018
Elsevier New York, NY [u.a.]

Journal of power sources 390, 108-115 () [10.1016/j.jpowsour.2018.04.044]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Electrolysis with polymer electrolyte membranes (PEMs) plays an increasingly important role in the development of inconsistent renewable energy technologies and seasonal storage. An effect that reduces the efficiency of PEM electrolysis is the mass transport limitation (MTL), which occurs at higher current densities and leads to a sudden increase in cell potentials. The oxygen generated on the anode side prevents the water from being supplied to the catalyst. Neutron-based imaging (neutron visualization techniques) make it possible to visualize mass transfer processes in the porous transport layer (PTL). When PTL materials are varied and operating modes used, it is possible to investigate the critical point at which the MTL is generated. This paper presents the results of neutron radiography measurements. In the course of the measurements, we have observed PEM electrolysis cells in operation, using different materials as anode PTL. The PTLs are metal plates made of sintered titanium particles, as well as titanium fiber. During the measurements, it was possible to visualize the water-gas distribution in the cell during operation in order to understand the mechanisms of mass transport.

Classification:

Contributing Institute(s):
  1. Elektrochemische Verfahrenstechnik (IEK-3)
Research Program(s):
  1. 134 - Electrolysis and Hydrogen (POF3-134) (POF3-134)

Appears in the scientific report 2018
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ICE > ICE-2
Workflow collections > Public records
IEK > IEK-3
Publications database

 Record created 2018-02-16, last modified 2024-07-11


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)