000843775 001__ 843775
000843775 005__ 20240711101553.0
000843775 0247_ $$2doi$$a10.1016/j.jpowsour.2018.04.044
000843775 0247_ $$2WOS$$aWOS:000434748000014
000843775 037__ $$aFZJ-2018-01318
000843775 082__ $$a620
000843775 1001_ $$0P:(DE-Juel1)168373$$aPanchenko, Olha$$b0$$eCorresponding author
000843775 245__ $$aIn-situ two-phase flow investigation of different porous transport layer for a polymer electrolyte membrane (PEM) electrolyzer with neutron spectroscopy
000843775 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000843775 3367_ $$2DRIVER$$aarticle
000843775 3367_ $$2DataCite$$aOutput Types/Journal article
000843775 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547475716_19393
000843775 3367_ $$2BibTeX$$aARTICLE
000843775 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000843775 3367_ $$00$$2EndNote$$aJournal Article
000843775 520__ $$aElectrolysis with polymer electrolyte membranes (PEMs) plays an increasingly important role in the development of inconsistent renewable energy technologies and seasonal storage. An effect that reduces the efficiency of PEM electrolysis is the mass transport limitation (MTL), which occurs at higher current densities and leads to a sudden increase in cell potentials. The oxygen generated on the anode side prevents the water from being supplied to the catalyst. Neutron-based imaging (neutron visualization techniques) make it possible to visualize mass transfer processes in the porous transport layer (PTL). When PTL materials are varied and operating modes used, it is possible to investigate the critical point at which the MTL is generated. This paper presents the results of neutron radiography measurements. In the course of the measurements, we have observed PEM electrolysis cells in operation, using different materials as anode PTL. The PTLs are metal plates made of sintered titanium particles, as well as titanium fiber. During the measurements, it was possible to visualize the water-gas distribution in the cell during operation in order to understand the mechanisms of mass transport.
000843775 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000843775 7001_ $$0P:(DE-Juel1)165158$$aBorgardt, Elena$$b1
000843775 7001_ $$0P:(DE-Juel1)129951$$aZwaygardt, Walter$$b2
000843775 7001_ $$0P:(DE-Juel1)168138$$aHackemüller, Franz Josef$$b3
000843775 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b4
000843775 7001_ $$0P:(DE-HGF)0$$aKardjilov, Nikolay$$b5
000843775 7001_ $$0P:(DE-HGF)0$$aArlt, Tobias$$b6
000843775 7001_ $$0P:(DE-HGF)0$$aManke, Ingo$$b7
000843775 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b8
000843775 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b9
000843775 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b10
000843775 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2018.04.044$$p108-115$$tJournal of power sources$$v390$$x0378-7753$$y2018
000843775 8564_ $$uhttps://juser.fz-juelich.de/record/843775/files/1-s2.0-S0378775318303872-main.pdf$$yRestricted
000843775 8564_ $$uhttps://juser.fz-juelich.de/record/843775/files/1-s2.0-S0378775318303872-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000843775 909CO $$ooai:juser.fz-juelich.de:843775$$pVDB
000843775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168373$$aForschungszentrum Jülich$$b0$$kFZJ
000843775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165158$$aForschungszentrum Jülich$$b1$$kFZJ
000843775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129951$$aForschungszentrum Jülich$$b2$$kFZJ
000843775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168138$$aForschungszentrum Jülich$$b3$$kFZJ
000843775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b4$$kFZJ
000843775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b8$$kFZJ
000843775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b9$$kFZJ
000843775 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b9$$kRWTH
000843775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b10$$kFZJ
000843775 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b10$$kRWTH
000843775 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000843775 9141_ $$y2018
000843775 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015
000843775 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000843775 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000843775 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000843775 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000843775 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000843775 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000843775 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000843775 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000843775 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000843775 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000843775 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000843775 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015
000843775 920__ $$lyes
000843775 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000843775 980__ $$ajournal
000843775 980__ $$aVDB
000843775 980__ $$aI:(DE-Juel1)IEK-3-20101013
000843775 980__ $$aUNRESTRICTED
000843775 981__ $$aI:(DE-Juel1)ICE-2-20101013