001     843966
005     20240610121148.0
024 7 _ |a 10.1126/sciadv.aao7086
|2 doi
024 7 _ |a 2128/18027
|2 Handle
024 7 _ |a pmid:29740608
|2 pmid
024 7 _ |a WOS:000431374900018
|2 WOS
024 7 _ |a altmetric:35865345
|2 altmetric
037 _ _ |a FZJ-2018-01484
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Keidel, Rico
|0 0000-0002-7802-9407
|b 0
|e Corresponding author
245 _ _ |a Time-resolved structural evolution during the collapse of responsive hydrogels: The microgel-to-particle transition
260 _ _ |a Washington, DC [u.a.]
|c 2018
|b Assoc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1523534711_13028
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Adaptive hydrogels, often termed smart materials, are macromolecules whose structure adjusts to external stimuli. Responsive micro- and nanogels are particularly interesting because the small length scale enables very fast response times. Chemical cross-links provide topological constraints and define the three-dimensional structure of the microgels, whereas their porous structure permits fast mass transfer, enabling very rapid structural adaption of the microgel to the environment. The change of microgel structure involves a unique transition from a flexible, swollen finite-size macromolecular network, characterized by a fuzzy surface, to a colloidal particle with homogeneous density and a sharp surface. In this contribution, we determine, for the first time, the structural evolution during the microgel-to-particle transition. Time-resolved small-angle x-ray scattering experiments and computer simulations unambiguously reveal a two-stage process: In a first, very fast process, collapsed clusters form at the periphery, leading to an intermediate, hollowish core-shell structure that slowly transforms to a globule. This structural evolution is independent of the type of stimulus and thus applies to instantaneous transitions as in a temperature jump or to slower stimuli that rely on the uptake of active molecules from and/or exchange with the environment. The fast transitions of size and shape provide unique opportunities for various applications as, for example, in uptake and release, catalysis, or sensing.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ghavami, Ali
|0 P:(DE-Juel1)164360
|b 1
700 1 _ |a Lugo, Dersy M.
|0 0000-0002-7539-3916
|b 2
700 1 _ |a Lotze, Gudrun
|0 0000-0001-7995-2693
|b 3
700 1 _ |a Virtanen, Otto
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Beumers, Peter
|0 0000-0002-1012-3835
|b 5
700 1 _ |a Pedersen, Jan Skov
|0 0000-0002-7768-0206
|b 6
700 1 _ |a Bardow, Andre
|0 P:(DE-Juel1)172023
|b 7
700 1 _ |a Winkler, Roland G.
|0 P:(DE-Juel1)131039
|b 8
|e Corresponding author
700 1 _ |a Richtering, Walter
|0 P:(DE-Juel1)IHRS-BioSoft-140012
|b 9
|e Corresponding author
773 _ _ |a 10.1126/sciadv.aao7086
|g Vol. 4, no. 4, p. eaao7086 -
|0 PERI:(DE-600)2810933-8
|n 4
|p eaao7086
|t Science advances
|v 4
|y 2018
|x 2375-2548
856 4 _ |u https://juser.fz-juelich.de/record/843966/files/eaao7086.full.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/843966/files/eaao7086.full.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/843966/files/eaao7086.full.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/843966/files/eaao7086.full.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/843966/files/eaao7086.full.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/843966/files/eaao7086.full.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:843966
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)164360
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)172023
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131039
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-Juel1)IHRS-BioSoft-140012
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-2-20090406
|k IAS-2
|l Theorie der Weichen Materie und Biophysik
|x 0
920 1 _ |0 I:(DE-Juel1)ICS-2-20110106
|k ICS-2
|l Theorie der Weichen Materie und Biophysik
|x 1
920 1 _ |0 I:(DE-82)080008_20150909
|k JARA-SOFT
|l JARA-SOFT
|x 2
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-2-20090406
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a I:(DE-82)080008_20150909
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21