000844182 001__ 844182
000844182 005__ 20240711113747.0
000844182 0247_ $$2doi$$a10.1088/1402-4896/aa93a2
000844182 0247_ $$2ISSN$$a0031-8949
000844182 0247_ $$2ISSN$$a1402-4896
000844182 0247_ $$2WOS$$aWOS:000417694700007
000844182 0247_ $$2altmetric$$aaltmetric:29500194
000844182 037__ $$aFZJ-2018-01634
000844182 082__ $$a530
000844182 1001_ $$00000-0002-4453-953X$$aSakamoto, Ryuichi$$b0$$eCorresponding author
000844182 245__ $$aSurface morphology in tungsten and RAFM steel exposed to helium plasma in PSI-2
000844182 260__ $$aBristol$$bIoP Publ.$$c2017
000844182 3367_ $$2DRIVER$$aarticle
000844182 3367_ $$2DataCite$$aOutput Types/Journal article
000844182 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1520330254_21024
000844182 3367_ $$2BibTeX$$aARTICLE
000844182 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844182 3367_ $$00$$2EndNote$$aJournal Article
000844182 520__ $$aImpact of the helium plasma exposure on the surface modification in tungsten and reduced activation ferritic/martensitic (RAFM) steel have been investigated on the linear plasma device PSI-2 assuming the condition of DEMO first wall. In tungsten, a nanoscale undulating surface structure, which has a periodic arrangement, is formed under low temperature conditions below fuzz nanostructure formation threshold ~1000 K. Interval and direction of the undulation shows dependence on the crystal orientation. A large variation in surface level up to 200 nm has been observed among grains at a fluence of $3\times {10}^{26}$ He m−2 showing dependence of the surface erosion rate on the crystal orientation. The {100} plane in which the undulating surface structure is not formed shows the highest erosion rate. This significant erosion is due to the multistage sputtering through impurity. In RAFM steel, sponge-like nanostructure is developed and it grows with increasing helium fluence beyond 1 μm. In the sponge-like nanostructure, a composition change from the base material is observed in which the tungsten ratio increases while the iron ratio decreases showing differences in sputtering ratio depending on the atomic mass.
000844182 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000844182 588__ $$aDataset connected to CrossRef
000844182 7001_ $$0P:(DE-HGF)0$$aBernard, Elodie$$b1
000844182 7001_ $$0P:(DE-Juel1)130070$$aKreter, Arkadi$$b2
000844182 7001_ $$0P:(DE-HGF)0$$aMartin, Céline$$b3
000844182 7001_ $$0P:(DE-HGF)0$$aPégourié, Bernard$$b4
000844182 7001_ $$0P:(DE-HGF)0$$aPieters, Gregory$$b5
000844182 7001_ $$0P:(DE-HGF)0$$aRousseau, Bernard$$b6
000844182 7001_ $$0P:(DE-HGF)0$$aGrisolia, Christian$$b7
000844182 7001_ $$0P:(DE-HGF)0$$aYoshida, Naoaki$$b8
000844182 773__ $$0PERI:(DE-600)1477351-x$$a10.1088/1402-4896/aa93a2$$gVol. T170, p. 014062 -$$p014062 -$$tPhysica scripta$$vT170$$x1402-4896$$y2017
000844182 8564_ $$uhttps://juser.fz-juelich.de/record/844182/files/Sakamoto_2017_Phys._Scr._2017_014062.pdf$$yRestricted
000844182 8564_ $$uhttps://juser.fz-juelich.de/record/844182/files/Sakamoto_2017_Phys._Scr._2017_014062.gif?subformat=icon$$xicon$$yRestricted
000844182 8564_ $$uhttps://juser.fz-juelich.de/record/844182/files/Sakamoto_2017_Phys._Scr._2017_014062.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844182 8564_ $$uhttps://juser.fz-juelich.de/record/844182/files/Sakamoto_2017_Phys._Scr._2017_014062.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844182 8564_ $$uhttps://juser.fz-juelich.de/record/844182/files/Sakamoto_2017_Phys._Scr._2017_014062.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844182 8564_ $$uhttps://juser.fz-juelich.de/record/844182/files/Sakamoto_2017_Phys._Scr._2017_014062.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844182 909CO $$ooai:juser.fz-juelich.de:844182$$pVDB
000844182 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130070$$aForschungszentrum Jülich$$b2$$kFZJ
000844182 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000844182 9141_ $$y2018
000844182 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000844182 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000844182 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844182 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844182 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844182 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844182 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844182 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844182 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844182 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000844182 980__ $$ajournal
000844182 980__ $$aVDB
000844182 980__ $$aI:(DE-Juel1)IEK-4-20101013
000844182 980__ $$aUNRESTRICTED
000844182 981__ $$aI:(DE-Juel1)IFN-1-20101013