000844236 001__ 844236
000844236 005__ 20210129232832.0
000844236 0247_ $$2doi$$a10.1103/PhysRevD.97.034504
000844236 0247_ $$2ISSN$$a0556-2821
000844236 0247_ $$2ISSN$$a1089-4918
000844236 0247_ $$2ISSN$$a1550-2368
000844236 0247_ $$2ISSN$$a1550-7998
000844236 0247_ $$2ISSN$$a2470-0010
000844236 0247_ $$2ISSN$$a2470-0029
000844236 0247_ $$2arXiv$$aarXiv:1711.11385
000844236 0247_ $$2Handle$$a2128/17591
000844236 0247_ $$2WOS$$aWOS:000424629800002
000844236 0247_ $$2altmetric$$aaltmetric:29736265
000844236 037__ $$aFZJ-2018-01677
000844236 082__ $$a530
000844236 1001_ $$0P:(DE-Juel1)145643$$aHasan, Nesreen$$b0$$eCorresponding author
000844236 245__ $$aComputing the nucleon charge and axial radii directly at Q² = 0 in lattice QCD
000844236 260__ $$aWoodbury, NY$$bInst.$$c2018
000844236 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2018-02-09
000844236 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2018-02-01
000844236 3367_ $$2DRIVER$$aarticle
000844236 3367_ $$2DataCite$$aOutput Types/Journal article
000844236 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544596521_28838
000844236 3367_ $$2BibTeX$$aARTICLE
000844236 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844236 3367_ $$00$$2EndNote$$aJournal Article
000844236 520__ $$aWe describe a procedure for extracting momentum derivatives of nucleon matrix elements on the lattice directly at $Q^2=0$. This is based on the Rome method for computing momentum derivatives of quark propagators. We apply this procedure to extract the nucleon isovector magnetic moment and charge radius as well as the isovector induced pseudoscalar form factor at $Q^2=0$ and the axial radius. For comparison, we also determine these quantities with the traditional approach of computing the corresponding form factors, i.e. $G^v_E(Q^2)$ and $G_M^v(Q^2)$ for the case of the vector current and $G_P^v(Q^2)$ and $G_A^v(Q^2)$ for the axial current, at multiple $Q^2$ values followed by $z$-expansion fits. We perform our calculations at the physical pion mass using a 2HEX-smeared Wilson-clover action. To control the effects of excited-state contamination, the calculations were done at three source-sink separations and the summation method was used. The derivative method produces results consistent with those from the traditional approach but with larger statistical uncertainties especially for the isovector charge and axial radii.
000844236 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000844236 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1
000844236 542__ $$2Crossref$$i2018-02-09$$uhttps://creativecommons.org/licenses/by/4.0/
000844236 588__ $$aDataset connected to arXivarXiv, CrossRef
000844236 7001_ $$0P:(DE-HGF)0$$aGreen, Jeremy$$b1$$eCorresponding author
000844236 7001_ $$0P:(DE-HGF)0$$aMeinel, Stefan$$b2$$eCorresponding author
000844236 7001_ $$0P:(DE-HGF)0$$aEngelhardt, Michael$$b3
000844236 7001_ $$0P:(DE-Juel1)132171$$aKrieg, Stefan$$b4
000844236 7001_ $$0P:(DE-HGF)0$$aNegele, John$$b5
000844236 7001_ $$0P:(DE-HGF)0$$aPochinsky, Andrew$$b6
000844236 7001_ $$0P:(DE-HGF)0$$aSyritsyn, Sergey$$b7
000844236 77318 $$2Crossref$$3journal-article$$a10.1103/physrevd.97.034504$$b : American Physical Society (APS), 2018-02-09$$n3$$p034504$$tPhysical Review D$$v97$$x2470-0010$$y2018
000844236 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/PhysRevD.97.034504$$gVol. 97, no. 3, p. 034504$$n3$$p034504$$tPhysical review / D$$v97$$x2470-0010$$y2018
000844236 8564_ $$uhttp://arxiv.org/abs/arXiv:1711.11385
000844236 8564_ $$uhttps://juser.fz-juelich.de/record/844236/files/PhysRevD.97.034504.pdf$$yOpenAccess
000844236 8564_ $$uhttps://juser.fz-juelich.de/record/844236/files/PhysRevD.97.034504.gif?subformat=icon$$xicon$$yOpenAccess
000844236 8564_ $$uhttps://juser.fz-juelich.de/record/844236/files/PhysRevD.97.034504.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000844236 8564_ $$uhttps://juser.fz-juelich.de/record/844236/files/PhysRevD.97.034504.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000844236 8564_ $$uhttps://juser.fz-juelich.de/record/844236/files/PhysRevD.97.034504.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000844236 8564_ $$uhttps://juser.fz-juelich.de/record/844236/files/PhysRevD.97.034504.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000844236 909CO $$ooai:juser.fz-juelich.de:844236$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000844236 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145643$$aForschungszentrum Jülich$$b0$$kFZJ
000844236 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich$$b4$$kFZJ
000844236 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000844236 9141_ $$y2018
000844236 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844236 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000844236 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000844236 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV D : 2015
000844236 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844236 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844236 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844236 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844236 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000844236 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000844236 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844236 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844236 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844236 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000844236 920__ $$lyes
000844236 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000844236 980__ $$ajournal
000844236 980__ $$aVDB
000844236 980__ $$aI:(DE-Juel1)JSC-20090406
000844236 980__ $$aUNRESTRICTED
000844236 9801_ $$aFullTexts