Journal Article FZJ-2018-01677

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Computing the nucleon charge and axial radii directly at Q² = 0 in lattice QCD

 ;  ;  ;  ;  ;  ;  ;

2018
Inst. Woodbury, NY

Physical review / D 97(3), 034504 () [10.1103/PhysRevD.97.034504]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: We describe a procedure for extracting momentum derivatives of nucleon matrix elements on the lattice directly at $Q^2=0$. This is based on the Rome method for computing momentum derivatives of quark propagators. We apply this procedure to extract the nucleon isovector magnetic moment and charge radius as well as the isovector induced pseudoscalar form factor at $Q^2=0$ and the axial radius. For comparison, we also determine these quantities with the traditional approach of computing the corresponding form factors, i.e. $G^v_E(Q^2)$ and $G_M^v(Q^2)$ for the case of the vector current and $G_P^v(Q^2)$ and $G_A^v(Q^2)$ for the axial current, at multiple $Q^2$ values followed by $z$-expansion fits. We perform our calculations at the physical pion mass using a 2HEX-smeared Wilson-clover action. To control the effects of excited-state contamination, the calculations were done at three source-sink separations and the summation method was used. The derivative method produces results consistent with those from the traditional approach but with larger statistical uncertainties especially for the isovector charge and axial radii.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)
  2. PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405) (PHD-NO-GRANT-20170405)

Appears in the scientific report 2018
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; SCOAP3 OpenAccess ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Workflow collections > Public records
Institute Collections > JSC
Publications database
Open Access

 Record created 2018-03-07, last modified 2021-01-29