Hauptseite > Publikationsdatenbank > Computing the nucleon charge and axial radii directly at Q² = 0 in lattice QCD > print |
001 | 844236 | ||
005 | 20210129232832.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevD.97.034504 |2 doi |
024 | 7 | _ | |a 0556-2821 |2 ISSN |
024 | 7 | _ | |a 1089-4918 |2 ISSN |
024 | 7 | _ | |a 1550-2368 |2 ISSN |
024 | 7 | _ | |a 1550-7998 |2 ISSN |
024 | 7 | _ | |a 2470-0010 |2 ISSN |
024 | 7 | _ | |a 2470-0029 |2 ISSN |
024 | 7 | _ | |a arXiv:1711.11385 |2 arXiv |
024 | 7 | _ | |a 2128/17591 |2 Handle |
024 | 7 | _ | |a WOS:000424629800002 |2 WOS |
024 | 7 | _ | |a altmetric:29736265 |2 altmetric |
037 | _ | _ | |a FZJ-2018-01677 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Hasan, Nesreen |0 P:(DE-Juel1)145643 |b 0 |e Corresponding author |
245 | _ | _ | |a Computing the nucleon charge and axial radii directly at Q² = 0 in lattice QCD |
260 | _ | _ | |a Woodbury, NY |c 2018 |b Inst. |
264 | _ | 1 | |3 online |2 Crossref |b American Physical Society (APS) |c 2018-02-09 |
264 | _ | 1 | |3 print |2 Crossref |b American Physical Society (APS) |c 2018-02-01 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1544596521_28838 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We describe a procedure for extracting momentum derivatives of nucleon matrix elements on the lattice directly at $Q^2=0$. This is based on the Rome method for computing momentum derivatives of quark propagators. We apply this procedure to extract the nucleon isovector magnetic moment and charge radius as well as the isovector induced pseudoscalar form factor at $Q^2=0$ and the axial radius. For comparison, we also determine these quantities with the traditional approach of computing the corresponding form factors, i.e. $G^v_E(Q^2)$ and $G_M^v(Q^2)$ for the case of the vector current and $G_P^v(Q^2)$ and $G_A^v(Q^2)$ for the axial current, at multiple $Q^2$ values followed by $z$-expansion fits. We perform our calculations at the physical pion mass using a 2HEX-smeared Wilson-clover action. To control the effects of excited-state contamination, the calculations were done at three source-sink separations and the summation method was used. The derivative method produces results consistent with those from the traditional approach but with larger statistical uncertainties especially for the isovector charge and axial radii. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
536 | _ | _ | |0 G:(DE-Juel1)PHD-NO-GRANT-20170405 |x 1 |c PHD-NO-GRANT-20170405 |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405) |
542 | _ | _ | |i 2018-02-09 |2 Crossref |u https://creativecommons.org/licenses/by/4.0/ |
588 | _ | _ | |a Dataset connected to arXivarXiv, CrossRef |
700 | 1 | _ | |a Green, Jeremy |0 P:(DE-HGF)0 |b 1 |e Corresponding author |
700 | 1 | _ | |a Meinel, Stefan |0 P:(DE-HGF)0 |b 2 |e Corresponding author |
700 | 1 | _ | |a Engelhardt, Michael |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Krieg, Stefan |0 P:(DE-Juel1)132171 |b 4 |
700 | 1 | _ | |a Negele, John |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Pochinsky, Andrew |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Syritsyn, Sergey |0 P:(DE-HGF)0 |b 7 |
773 | 1 | 8 | |a 10.1103/physrevd.97.034504 |b : American Physical Society (APS), 2018-02-09 |n 3 |p 034504 |3 journal-article |2 Crossref |t Physical Review D |v 97 |y 2018 |x 2470-0010 |
773 | _ | _ | |a 10.1103/PhysRevD.97.034504 |g Vol. 97, no. 3, p. 034504 |0 PERI:(DE-600)2844732-3 |n 3 |p 034504 |t Physical review / D |v 97 |y 2018 |x 2470-0010 |
856 | 4 | _ | |u http://arxiv.org/abs/arXiv:1711.11385 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/844236/files/PhysRevD.97.034504.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/844236/files/PhysRevD.97.034504.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/844236/files/PhysRevD.97.034504.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/844236/files/PhysRevD.97.034504.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/844236/files/PhysRevD.97.034504.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/844236/files/PhysRevD.97.034504.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:844236 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)145643 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)132171 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV D : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a SCOAP3 |0 StatID:(DE-HGF)0570 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|