001     844236
005     20210129232832.0
024 7 _ |a 10.1103/PhysRevD.97.034504
|2 doi
024 7 _ |a 0556-2821
|2 ISSN
024 7 _ |a 1089-4918
|2 ISSN
024 7 _ |a 1550-2368
|2 ISSN
024 7 _ |a 1550-7998
|2 ISSN
024 7 _ |a 2470-0010
|2 ISSN
024 7 _ |a 2470-0029
|2 ISSN
024 7 _ |a arXiv:1711.11385
|2 arXiv
024 7 _ |a 2128/17591
|2 Handle
024 7 _ |a WOS:000424629800002
|2 WOS
024 7 _ |a altmetric:29736265
|2 altmetric
037 _ _ |a FZJ-2018-01677
082 _ _ |a 530
100 1 _ |a Hasan, Nesreen
|0 P:(DE-Juel1)145643
|b 0
|e Corresponding author
245 _ _ |a Computing the nucleon charge and axial radii directly at Q² = 0 in lattice QCD
260 _ _ |a Woodbury, NY
|c 2018
|b Inst.
264 _ 1 |3 online
|2 Crossref
|b American Physical Society (APS)
|c 2018-02-09
264 _ 1 |3 print
|2 Crossref
|b American Physical Society (APS)
|c 2018-02-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1544596521_28838
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We describe a procedure for extracting momentum derivatives of nucleon matrix elements on the lattice directly at $Q^2=0$. This is based on the Rome method for computing momentum derivatives of quark propagators. We apply this procedure to extract the nucleon isovector magnetic moment and charge radius as well as the isovector induced pseudoscalar form factor at $Q^2=0$ and the axial radius. For comparison, we also determine these quantities with the traditional approach of computing the corresponding form factors, i.e. $G^v_E(Q^2)$ and $G_M^v(Q^2)$ for the case of the vector current and $G_P^v(Q^2)$ and $G_A^v(Q^2)$ for the axial current, at multiple $Q^2$ values followed by $z$-expansion fits. We perform our calculations at the physical pion mass using a 2HEX-smeared Wilson-clover action. To control the effects of excited-state contamination, the calculations were done at three source-sink separations and the summation method was used. The derivative method produces results consistent with those from the traditional approach but with larger statistical uncertainties especially for the isovector charge and axial radii.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|x 1
|c PHD-NO-GRANT-20170405
|a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
542 _ _ |i 2018-02-09
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to arXivarXiv, CrossRef
700 1 _ |a Green, Jeremy
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Meinel, Stefan
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Engelhardt, Michael
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Krieg, Stefan
|0 P:(DE-Juel1)132171
|b 4
700 1 _ |a Negele, John
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Pochinsky, Andrew
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Syritsyn, Sergey
|0 P:(DE-HGF)0
|b 7
773 1 8 |a 10.1103/physrevd.97.034504
|b : American Physical Society (APS), 2018-02-09
|n 3
|p 034504
|3 journal-article
|2 Crossref
|t Physical Review D
|v 97
|y 2018
|x 2470-0010
773 _ _ |a 10.1103/PhysRevD.97.034504
|g Vol. 97, no. 3, p. 034504
|0 PERI:(DE-600)2844732-3
|n 3
|p 034504
|t Physical review / D
|v 97
|y 2018
|x 2470-0010
856 4 _ |u http://arxiv.org/abs/arXiv:1711.11385
856 4 _ |u https://juser.fz-juelich.de/record/844236/files/PhysRevD.97.034504.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/844236/files/PhysRevD.97.034504.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/844236/files/PhysRevD.97.034504.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/844236/files/PhysRevD.97.034504.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/844236/files/PhysRevD.97.034504.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/844236/files/PhysRevD.97.034504.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:844236
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145643
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132171
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV D : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a SCOAP3
|0 StatID:(DE-HGF)0570
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21