000844352 001__ 844352
000844352 005__ 20220930130142.0
000844352 0247_ $$2doi$$a10.1016/j.bpj.2018.02.011
000844352 0247_ $$2ISSN$$a0006-3495
000844352 0247_ $$2ISSN$$a1542-0086
000844352 0247_ $$2Handle$$a2128/18225
000844352 0247_ $$2pmid$$apmid:29642031
000844352 0247_ $$2WOS$$aWOS:000430214500011
000844352 0247_ $$2altmetric$$aaltmetric:36242614
000844352 037__ $$aFZJ-2018-01783
000844352 041__ $$aEnglish
000844352 082__ $$a570
000844352 1001_ $$0P:(DE-Juel1)161489$$aUluca, Boran$$b0$$ufzj
000844352 245__ $$aDNP-Enhanced MAS NMR: A Tool to Snapshot Conformational Ensembles of α -Synuclein in Different States
000844352 260__ $$aCambridge, Mass.$$bCell Press$$c2018
000844352 3367_ $$2DRIVER$$aarticle
000844352 3367_ $$2DataCite$$aOutput Types/Journal article
000844352 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536141906_465
000844352 3367_ $$2BibTeX$$aARTICLE
000844352 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844352 3367_ $$00$$2EndNote$$aJournal Article
000844352 520__ $$aIntrinsically disordered proteins dynamically sample a wide conformational space and therefore do not adopt a stable and defined three-dimensional conformation. The structural heterogeneity is related to their proper functioning in physiological processes. Knowledge of the conformational ensemble is crucial for a complete comprehension of this kind of proteins. We here present an approach that utilizes dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of sparsely isotope-labeled proteins in frozen solution to take snapshots of the complete structural ensembles by exploiting the inhomogeneously broadened line-shapes. We investigated the intrinsically disordered protein α-synuclein (α-syn), which plays a key role in the etiology of Parkinson’s disease, in three different physiologically relevant states. For the free monomer in frozen solution we could see that the so-called “random coil conformation” consists of α-helical and β-sheet-like conformations, and that secondary chemical shifts of neighboring amino acids tend to be correlated, indicative of frequent formation of secondary structure elements. Based on these results, we could estimate the number of disordered regions in fibrillar α-syn as well as in α-syn bound to membranes in different protein-to-lipid ratios. Our approach thus provides quantitative information on the propensity to sample transient secondary structures in different functional states. Molecular dynamics simulations rationalize the results.
000844352 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000844352 536__ $$0G:(DE-Juel1)jics69_20151101$$aComputational Enzyme Design (jics69_20151101)$$cjics69_20151101$$fComputational Enzyme Design$$x1
000844352 588__ $$aDataset connected to CrossRef
000844352 7001_ $$0P:(DE-Juel1)161253$$aViennet, Thibault$$b1$$ufzj
000844352 7001_ $$0P:(DE-Juel1)165744$$aPetrović, Dušan$$b2$$ufzj
000844352 7001_ $$0P:(DE-Juel1)167315$$aShaykhalishahi, Hamed$$b3
000844352 7001_ $$0P:(DE-Juel1)161487$$aWeirich, Franziska$$b4
000844352 7001_ $$0P:(DE-HGF)0$$aGönülalan, Ayşenur$$b5
000844352 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b6$$ufzj
000844352 7001_ $$0P:(DE-Juel1)156341$$aEtzkorn, Manuel$$b7$$ufzj
000844352 7001_ $$0P:(DE-Juel1)166306$$aHoyer, Wolfgang$$b8$$ufzj
000844352 7001_ $$0P:(DE-Juel1)132002$$aHeise, Henrike$$b9$$eCorresponding author$$ufzj
000844352 773__ $$0PERI:(DE-600)1477214-0$$a10.1016/j.bpj.2018.02.011$$gVol. 114, no. 7, p. 1614 - 1623$$n7$$p1614 - 1623$$tBiophysical journal$$v114$$x0006-3495$$y2018
000844352 8564_ $$uhttps://juser.fz-juelich.de/record/844352/files/DNP-Enhanced%20MAS%20NMR%20A%20Tool%20to%20Snapshot%20Conformational%20Ensembles%20of%20%CE%B1-Synuclein%20in%20Different%20States.pdf$$yOpenAccess
000844352 8564_ $$uhttps://juser.fz-juelich.de/record/844352/files/DNP-Enhanced%20MAS%20NMR%20A%20Tool%20to%20Snapshot%20Conformational%20Ensembles%20of%20%CE%B1-Synuclein%20in%20Different%20States.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000844352 8767_ $$d2018-03-12$$ePage charges$$jZahlung erfolgt$$lKK: Barbers
000844352 8767_ $$d2018-03-12$$eColour charges$$jZahlung erfolgt$$lKK: Barbers
000844352 909CO $$ooai:juser.fz-juelich.de:844352$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000844352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161489$$aForschungszentrum Jülich$$b0$$kFZJ
000844352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161253$$aForschungszentrum Jülich$$b1$$kFZJ
000844352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165744$$aForschungszentrum Jülich$$b2$$kFZJ
000844352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167315$$aForschungszentrum Jülich$$b3$$kFZJ
000844352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161487$$aForschungszentrum Jülich$$b4$$kFZJ
000844352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b5$$kFZJ
000844352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b6$$kFZJ
000844352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156341$$aForschungszentrum Jülich$$b7$$kFZJ
000844352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166306$$aForschungszentrum Jülich$$b8$$kFZJ
000844352 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132002$$aForschungszentrum Jülich$$b9$$kFZJ
000844352 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000844352 9141_ $$y2018
000844352 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844352 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000844352 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000844352 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOPHYS J : 2015
000844352 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844352 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844352 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844352 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844352 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000844352 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000844352 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000844352 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844352 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844352 920__ $$lyes
000844352 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000844352 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000844352 9801_ $$aAPC
000844352 9801_ $$aFullTexts
000844352 980__ $$ajournal
000844352 980__ $$aVDB
000844352 980__ $$aI:(DE-Juel1)ICS-6-20110106
000844352 980__ $$aI:(DE-82)080012_20140620
000844352 980__ $$aAPC
000844352 980__ $$aUNRESTRICTED
000844352 981__ $$aI:(DE-Juel1)IBI-7-20200312