001     844434
005     20240313103118.0
024 7 _ |a 10.1038/s41598-018-22990-7
|2 doi
024 7 _ |a 2128/20194
|2 Handle
024 7 _ |a pmid:29581430
|2 pmid
024 7 _ |a WOS:000428235200004
|2 WOS
024 7 _ |a altmetric:18204914
|2 altmetric
037 _ _ |a FZJ-2018-01853
041 _ _ |a English
082 _ _ |a 000
100 1 _ |a Denker, Michael
|0 P:(DE-Juel1)144807
|b 0
|e Corresponding author
245 _ _ |a LFP beta amplitude is linked to mesoscopic spatio-temporal phase patterns
260 _ _ |a London
|c 2018
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1543328236_23976
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Publikationsgebühren bezahlt, warten auf DOI, dann aus APC Korb herausnehmen und Institut INM-6 hinzufügen sowie DOI Import.
520 _ _ |a Beta oscillations observed in motor cortical local field potentials (LFPs) recorded on separate electrodes of a multi-electrode array have been shown to exhibit non-zero phase shifts that organize into planar waves. Here, we generalize this concept to additional classes of salient patterns that fully describe the spatial organization of beta oscillations. During a delayed reach-to-grasp task we distinguish planar, synchronized, random, circular, and radial phase patterns in monkey primary motor and dorsal premotor cortices. We observe that patterns correlate with the beta amplitude (envelope): Coherent planar/radial wave propagation accelerates with growing amplitude, and synchronized patterns are observed at largest amplitudes. In contrast, incoherent random or circular patterns are observed almost exclusively when beta is strongly attenuated. The occurrence probability of a particular pattern modulates with behavioral epochs in the same way as beta amplitude: Coherent patterns are more present during movement preparation where amplitudes are large, while incoherent phase patterns are dominant during movement execution where amplitudes are small. Thus, we uncover a trigonal link between the spatial arrangement of beta phases, beta amplitude, and behavior. Together with previous findings, we discuss predictions on the spatio-temporal organization of precisely coordinated spiking on the mesoscopic scale as a function of beta power.
536 _ _ |a 89571 - Connectivity and Activity (POF2-89571)
|0 G:(DE-HGF)POF2-89571
|c POF2-89571
|x 0
|f POF II T
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|x 1
|f H2020-Adhoc-2014-20
536 _ _ |a HBP - The Human Brain Project (604102)
|0 G:(EU-Grant)604102
|c 604102
|x 2
|f FP7-ICT-2013-FET-F
536 _ _ |a BRAINSCALES - Brain-inspired multiscale computation in neuromorphic hybrid systems (269921)
|0 G:(EU-Grant)269921
|c 269921
|x 3
|f FP7-ICT-2009-6
536 _ _ |a DFG project 322093511 - Kognitive Leistung als Ergebnis koordinierter neuronaler Aktivität in unreifen präfrontal-hippokampalen Netzwerken (322093511)
|0 G:(GEPRIS)322093511
|c 322093511
|x 4
536 _ _ |a DFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842)
|0 G:(GEPRIS)238707842
|c 238707842
|x 5
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zehl, Lyuba
|0 P:(DE-Juel1)145394
|b 1
700 1 _ |a Kilavik, Bjørg E.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 3
700 1 _ |a Brochier, Thomas
|0 0000-0001-6948-1234
|b 4
700 1 _ |a Riehle, Alexa
|0 P:(DE-Juel1)172858
|b 5
|u fzj
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 6
|u fzj
773 _ _ |a 10.1038/s41598-018-22990-7
|g Vol. 8, no. 1, p. 5200
|0 PERI:(DE-600)2615211-3
|n 1
|p 5200
|t Scientific reports
|v 8
|y 2018
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/844434/files/2676098344-Denker.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/844434/files/2676098344-Denker.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/844434/files/s41598-018-22990-7.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/844434/files/s41598-018-22990-7.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/844434/files/s41598-018-22990-7.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/844434/files/s41598-018-22990-7.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/844434/files/s41598-018-22990-7.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/844434/files/s41598-018-22990-7.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:844434
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144807
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145394
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172858
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)144168
913 1 _ |a DE-HGF
|0 G:(DE-HGF)POF2-89571
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21