000844592 001__ 844592 000844592 005__ 20210129233006.0 000844592 0247_ $$2doi$$a10.1016/j.geoderma.2017.12.003 000844592 0247_ $$2ISSN$$a0016-7061 000844592 0247_ $$2ISSN$$a1872-6259 000844592 0247_ $$2WOS$$aWOS:000424179300012 000844592 0247_ $$2altmetric$$aaltmetric:31213931 000844592 037__ $$aFZJ-2018-01996 000844592 041__ $$aEnglish 000844592 082__ $$a550 000844592 1001_ $$0P:(DE-Juel1)166452$$aKoch, Maximilian$$b0$$eCorresponding author 000844592 245__ $$aPhosphorus stocks and speciation in soil profiles of a long-term fertilizer experiment: Evidence from sequential fractionation, P K -edge XANES, and 31 P NMR spectroscopy 000844592 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018 000844592 3367_ $$2DRIVER$$aarticle 000844592 3367_ $$2DataCite$$aOutput Types/Journal article 000844592 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1527516385_29138 000844592 3367_ $$2BibTeX$$aARTICLE 000844592 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000844592 3367_ $$00$$2EndNote$$aJournal Article 000844592 520__ $$aAgricultural productivity depends on the use of phosphorus (P) of which not only the topsoil, but also the subsoil, can hold immense stocks. To assess their importance for plant nutrition, we compared the P status of Stagnic Cambisol profiles in experimental plots that received different P fertilizer applications for 16 years. Sequential fractionation was combined with P K-edge X-ray absorption near edge structure (XANES) spectroscopy and liquid 31P nuclear magnetic resonance (NMR) spectroscopy to identify the chemical P speciation. Fertilized topsoils showed P stocks larger by a factor of 1.2 to 1.4, and subsoil stocks larger by a factor of 1.3 to 1.5 than the control. P-XANES revealed the predominance of mainly inorganic P species, such as moderately labile Fe- (46 to 92%), Al- (0 to 40%) and Ca- (0 to 21%) P compounds besides organic P (0 to 12%). This was supported by 31P NMR with decreasing proportions of orthophosphate monoesters from topsoil (20 to 28%) towards the second subsoil layer (7 to 13%). In summary, fertilizer application maintained or increased P stocks but only slightly altered the P speciation throughout the profiles. The kind of fertilizers had no significant effect on soil P, only affecting the inorganic P pools. Our findings proved that subsoil P stocks are potentially important contributors to plant nutrition, but their accessibility must be assessed for improved soil P tests and reduced fertilizer recommendations. 000844592 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0 000844592 588__ $$aDataset connected to CrossRef 000844592 7001_ $$0P:(DE-HGF)0$$aKruse, Jens$$b1 000844592 7001_ $$0P:(DE-HGF)0$$aEichler-Löbermann, Bettina$$b2 000844592 7001_ $$0P:(DE-HGF)0$$aZimmer, Dana$$b3 000844592 7001_ $$0P:(DE-Juel1)133857$$aWillbold, Sabine$$b4 000844592 7001_ $$0P:(DE-HGF)0$$aLeinweber, Peter$$b5 000844592 7001_ $$0P:(DE-Juel1)164361$$aSiebers, Nina$$b6 000844592 773__ $$0PERI:(DE-600)2001729-7$$a10.1016/j.geoderma.2017.12.003$$gVol. 316, p. 115 - 126$$p115 - 126$$tGeoderma$$v316$$x0016-7061$$y2018 000844592 8564_ $$uhttps://juser.fz-juelich.de/record/844592/files/1-s2.0-S0016706116310382-main.pdf$$yRestricted 000844592 8564_ $$uhttps://juser.fz-juelich.de/record/844592/files/1-s2.0-S0016706116310382-main.gif?subformat=icon$$xicon$$yRestricted 000844592 8564_ $$uhttps://juser.fz-juelich.de/record/844592/files/1-s2.0-S0016706116310382-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000844592 8564_ $$uhttps://juser.fz-juelich.de/record/844592/files/1-s2.0-S0016706116310382-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000844592 8564_ $$uhttps://juser.fz-juelich.de/record/844592/files/1-s2.0-S0016706116310382-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000844592 8564_ $$uhttps://juser.fz-juelich.de/record/844592/files/1-s2.0-S0016706116310382-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000844592 909CO $$ooai:juser.fz-juelich.de:844592$$pVDB:Earth_Environment$$pVDB 000844592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166452$$aForschungszentrum Jülich$$b0$$kFZJ 000844592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133857$$aForschungszentrum Jülich$$b4$$kFZJ 000844592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164361$$aForschungszentrum Jülich$$b6$$kFZJ 000844592 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0 000844592 9141_ $$y2018 000844592 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000844592 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000844592 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000844592 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEODERMA : 2015 000844592 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000844592 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000844592 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000844592 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000844592 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000844592 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000844592 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000844592 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences 000844592 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000844592 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000844592 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0 000844592 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x1 000844592 980__ $$ajournal 000844592 980__ $$aVDB 000844592 980__ $$aI:(DE-Juel1)IBG-3-20101118 000844592 980__ $$aI:(DE-Juel1)ZEA-3-20090406 000844592 980__ $$aUNRESTRICTED