000844592 001__ 844592
000844592 005__ 20210129233006.0
000844592 0247_ $$2doi$$a10.1016/j.geoderma.2017.12.003
000844592 0247_ $$2ISSN$$a0016-7061
000844592 0247_ $$2ISSN$$a1872-6259
000844592 0247_ $$2WOS$$aWOS:000424179300012
000844592 0247_ $$2altmetric$$aaltmetric:31213931
000844592 037__ $$aFZJ-2018-01996
000844592 041__ $$aEnglish
000844592 082__ $$a550
000844592 1001_ $$0P:(DE-Juel1)166452$$aKoch, Maximilian$$b0$$eCorresponding author
000844592 245__ $$aPhosphorus stocks and speciation in soil profiles of a long-term fertilizer experiment: Evidence from sequential fractionation, P K -edge XANES, and 31 P NMR spectroscopy
000844592 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000844592 3367_ $$2DRIVER$$aarticle
000844592 3367_ $$2DataCite$$aOutput Types/Journal article
000844592 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1527516385_29138
000844592 3367_ $$2BibTeX$$aARTICLE
000844592 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844592 3367_ $$00$$2EndNote$$aJournal Article
000844592 520__ $$aAgricultural productivity depends on the use of phosphorus (P) of which not only the topsoil, but also the subsoil, can hold immense stocks. To assess their importance for plant nutrition, we compared the P status of Stagnic Cambisol profiles in experimental plots that received different P fertilizer applications for 16 years. Sequential fractionation was combined with P K-edge X-ray absorption near edge structure (XANES) spectroscopy and liquid 31P nuclear magnetic resonance (NMR) spectroscopy to identify the chemical P speciation. Fertilized topsoils showed P stocks larger by a factor of 1.2 to 1.4, and subsoil stocks larger by a factor of 1.3 to 1.5 than the control. P-XANES revealed the predominance of mainly inorganic P species, such as moderately labile Fe- (46 to 92%), Al- (0 to 40%) and Ca- (0 to 21%) P compounds besides organic P (0 to 12%). This was supported by 31P NMR with decreasing proportions of orthophosphate monoesters from topsoil (20 to 28%) towards the second subsoil layer (7 to 13%). In summary, fertilizer application maintained or increased P stocks but only slightly altered the P speciation throughout the profiles. The kind of fertilizers had no significant effect on soil P, only affecting the inorganic P pools. Our findings proved that subsoil P stocks are potentially important contributors to plant nutrition, but their accessibility must be assessed for improved soil P tests and reduced fertilizer recommendations.
000844592 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000844592 588__ $$aDataset connected to CrossRef
000844592 7001_ $$0P:(DE-HGF)0$$aKruse, Jens$$b1
000844592 7001_ $$0P:(DE-HGF)0$$aEichler-Löbermann, Bettina$$b2
000844592 7001_ $$0P:(DE-HGF)0$$aZimmer, Dana$$b3
000844592 7001_ $$0P:(DE-Juel1)133857$$aWillbold, Sabine$$b4
000844592 7001_ $$0P:(DE-HGF)0$$aLeinweber, Peter$$b5
000844592 7001_ $$0P:(DE-Juel1)164361$$aSiebers, Nina$$b6
000844592 773__ $$0PERI:(DE-600)2001729-7$$a10.1016/j.geoderma.2017.12.003$$gVol. 316, p. 115 - 126$$p115 - 126$$tGeoderma$$v316$$x0016-7061$$y2018
000844592 8564_ $$uhttps://juser.fz-juelich.de/record/844592/files/1-s2.0-S0016706116310382-main.pdf$$yRestricted
000844592 8564_ $$uhttps://juser.fz-juelich.de/record/844592/files/1-s2.0-S0016706116310382-main.gif?subformat=icon$$xicon$$yRestricted
000844592 8564_ $$uhttps://juser.fz-juelich.de/record/844592/files/1-s2.0-S0016706116310382-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844592 8564_ $$uhttps://juser.fz-juelich.de/record/844592/files/1-s2.0-S0016706116310382-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844592 8564_ $$uhttps://juser.fz-juelich.de/record/844592/files/1-s2.0-S0016706116310382-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844592 8564_ $$uhttps://juser.fz-juelich.de/record/844592/files/1-s2.0-S0016706116310382-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844592 909CO $$ooai:juser.fz-juelich.de:844592$$pVDB:Earth_Environment$$pVDB
000844592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166452$$aForschungszentrum Jülich$$b0$$kFZJ
000844592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133857$$aForschungszentrum Jülich$$b4$$kFZJ
000844592 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164361$$aForschungszentrum Jülich$$b6$$kFZJ
000844592 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000844592 9141_ $$y2018
000844592 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000844592 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844592 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000844592 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEODERMA : 2015
000844592 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844592 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000844592 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000844592 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844592 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844592 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844592 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844592 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000844592 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000844592 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844592 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000844592 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x1
000844592 980__ $$ajournal
000844592 980__ $$aVDB
000844592 980__ $$aI:(DE-Juel1)IBG-3-20101118
000844592 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000844592 980__ $$aUNRESTRICTED