000844743 001__ 844743
000844743 005__ 20240711092246.0
000844743 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2017.12.041
000844743 0247_ $$2ISSN$$a0955-2219
000844743 0247_ $$2ISSN$$a1873-619X
000844743 0247_ $$2WOS$$aWOS:000424716700088
000844743 037__ $$aFZJ-2018-02123
000844743 082__ $$a660
000844743 1001_ $$0P:(DE-Juel1)162276$$aZou, Ying$$b0
000844743 245__ $$aCreep Behavior of Porous La0.6Sr0.4Co0.2 Fe0.8O3-δ Substrate Material for Oxygen Separation Application
000844743 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000844743 3367_ $$2DRIVER$$aarticle
000844743 3367_ $$2DataCite$$aOutput Types/Journal article
000844743 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1522147314_12311
000844743 3367_ $$2BibTeX$$aARTICLE
000844743 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844743 3367_ $$00$$2EndNote$$aJournal Article
000844743 520__ $$aAdvanced oxygen transport membrane designs consist of a thin functional layer supported by a porous substrate material that carries mechanical loads. Creep deformation behavior is to be assessed to warrant a long-term reliable operation at elevated temperatures. Aiming towards an asymmetric composite, the current study reports and compares the creep behavior of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) perovskite porous substrate material with different porosity and pore structures in air for a temperature range of 800–1000 °C. A porosity and pore structure independent average stress exponent and activation energy are derived from the deformation data, both being representative for the LSCF material. To investigate the structural stability of the dense layer in an asymmetric membrane, sandwich samples of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) with porous substrate and dense layers on both side were tested by three-point bending with respect to creep rupture behavior of the dense layer. Creep rupture cracks were observed in the tensile surface of BSCF, but not in the case of LSCF.
000844743 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000844743 588__ $$aDataset connected to CrossRef
000844743 7001_ $$0P:(DE-Juel1)129660$$aSchulze-Küppers, Falk$$b1$$ufzj
000844743 7001_ $$0P:(DE-Juel1)161336$$aBalaguer, María$$b2
000844743 7001_ $$0P:(DE-Juel1)129755$$aMalzbender, Jürgen$$b3$$eCorresponding author$$ufzj
000844743 7001_ $$0P:(DE-Juel1)172056$$aKrüger, Manja$$b4$$ufzj
000844743 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2017.12.041$$gVol. 38, no. 4, p. 1702 - 1710$$n4$$p1702 - 1710$$tJournal of the European Ceramic Society$$v38$$x0955-2219$$y2018
000844743 8564_ $$uhttps://juser.fz-juelich.de/record/844743/files/1-s2.0-S0955221917308300-main.pdf$$yRestricted
000844743 8564_ $$uhttps://juser.fz-juelich.de/record/844743/files/1-s2.0-S0955221917308300-main.gif?subformat=icon$$xicon$$yRestricted
000844743 8564_ $$uhttps://juser.fz-juelich.de/record/844743/files/1-s2.0-S0955221917308300-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844743 8564_ $$uhttps://juser.fz-juelich.de/record/844743/files/1-s2.0-S0955221917308300-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844743 8564_ $$uhttps://juser.fz-juelich.de/record/844743/files/1-s2.0-S0955221917308300-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844743 8564_ $$uhttps://juser.fz-juelich.de/record/844743/files/1-s2.0-S0955221917308300-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844743 909CO $$ooai:juser.fz-juelich.de:844743$$pVDB
000844743 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129660$$aForschungszentrum Jülich$$b1$$kFZJ
000844743 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129755$$aForschungszentrum Jülich$$b3$$kFZJ
000844743 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172056$$aForschungszentrum Jülich$$b4$$kFZJ
000844743 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000844743 9141_ $$y2018
000844743 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2015
000844743 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844743 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844743 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000844743 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000844743 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844743 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844743 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844743 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844743 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844743 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000844743 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844743 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000844743 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000844743 980__ $$ajournal
000844743 980__ $$aVDB
000844743 980__ $$aI:(DE-Juel1)IEK-1-20101013
000844743 980__ $$aI:(DE-Juel1)IEK-2-20101013
000844743 980__ $$aUNRESTRICTED
000844743 981__ $$aI:(DE-Juel1)IMD-1-20101013
000844743 981__ $$aI:(DE-Juel1)IMD-2-20101013