Journal Article FZJ-2018-02123

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Creep Behavior of Porous La0.6Sr0.4Co0.2 Fe0.8O3-δ Substrate Material for Oxygen Separation Application

 ;  ;  ;  ;

2018
Elsevier Science Amsterdam [u.a.]

Journal of the European Ceramic Society 38(4), 1702 - 1710 () [10.1016/j.jeurceramsoc.2017.12.041]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Advanced oxygen transport membrane designs consist of a thin functional layer supported by a porous substrate material that carries mechanical loads. Creep deformation behavior is to be assessed to warrant a long-term reliable operation at elevated temperatures. Aiming towards an asymmetric composite, the current study reports and compares the creep behavior of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) perovskite porous substrate material with different porosity and pore structures in air for a temperature range of 800–1000 °C. A porosity and pore structure independent average stress exponent and activation energy are derived from the deformation data, both being representative for the LSCF material. To investigate the structural stability of the dense layer in an asymmetric membrane, sandwich samples of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) with porous substrate and dense layers on both side were tested by three-point bending with respect to creep rupture behavior of the dense layer. Creep rupture cracks were observed in the tensile surface of BSCF, but not in the case of LSCF.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
  2. Werkstoffstruktur und -eigenschaften (IEK-2)
Research Program(s):
  1. 111 - Efficient and Flexible Power Plants (POF3-111) (POF3-111)

Appears in the scientific report 2018
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-2
Institute Collections > IMD > IMD-1
Workflow collections > Public records
IEK > IEK-2
IEK > IEK-1
Publications database

 Record created 2018-03-27, last modified 2024-07-11


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)