000844862 001__ 844862
000844862 005__ 20240712101021.0
000844862 0247_ $$2doi$$a10.5194/acp-18-3147-2018
000844862 0247_ $$2ISSN$$a1680-7316
000844862 0247_ $$2ISSN$$a1680-7324
000844862 0247_ $$2Handle$$a2128/20056
000844862 0247_ $$2WOS$$aWOS:000426721800001
000844862 0247_ $$2altmetric$$aaltmetric:33951638
000844862 037__ $$aFZJ-2018-02213
000844862 041__ $$aEnglish
000844862 082__ $$a550
000844862 1001_ $$0P:(DE-Juel1)164575$$aStadtler, Scarlet$$b0$$eCorresponding author
000844862 245__ $$aOzone impacts of gas–aerosol uptake in global chemistry transport models
000844862 260__ $$aKatlenburg-Lindau$$bEGU$$c2018
000844862 3367_ $$2DRIVER$$aarticle
000844862 3367_ $$2DataCite$$aOutput Types/Journal article
000844862 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552644540_21968
000844862 3367_ $$2BibTeX$$aARTICLE
000844862 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844862 3367_ $$00$$2EndNote$$aJournal Article
000844862 500__ $$aenthält Publikationsgebühren
000844862 520__ $$aThe impact of six heterogeneous gas–aerosol up-take reactions on tropospheric ozone and nitrogen specieswas studied using two chemical transport models, the Mete-orological Synthesizing Centre-West of the European Moni-toring and Evaluation Programme (EMEP MSC-W) and theEuropean Centre Hamburg general circulation model com-bined with versions of the Hamburg Aerosol Model andModel for Ozone and Related chemical Tracers (ECHAM-HAMMOZ). Species undergoing heterogeneous reactions inboth models include N2O5, NO3, NO2, O3, HNO3, and HO2.Since heterogeneous reactions take place at the aerosol sur-face area, the modelled surface area density (Sa) of both mod-els was compared to a satellite product retrieving the surfacearea. This comparison shows a good agreement in global pat-tern and especially the capability of both models to capturethe extreme aerosol loadings in east Asia.The impact of the heterogeneous reactions was evaluatedby the simulation of a reference run containing all hetero-geneous reactions and several sensitivity runs. One reactionwas turned off in each sensitivity run to compare it withthe reference run. The analysis of the sensitivity runs con-firms that the globally most important heterogeneous reac-tion is the one of N2O5. Nevertheless, NO2, HNO3, andHO2heterogeneous reactions gain relevance particularly ineast Asia due to the presence of high NOxconcentrationsand highSain the same region. The heterogeneous reactionof O3itself on dust is of minor relevance compared to theother heterogeneous reactions. The impacts of the N2O5re-actions show strong seasonal variations, with the biggest im-pacts on O3in springtime when photochemical reactions areactive and N2O5levels still high. Evaluation of the modelswith northern hemispheric ozone surface observations yieldsa better agreement of the models with observations in termsof concentration levels, variability, and temporal correlationsat most sites when the heterogeneous reactions are incorpo-rated. Our results are loosely consistent with results from ear-lier studies, although the magnitude of changes induced byN2O5reaction is at the low end of estimates, which seems tofit a trend, whereby the more recent the study the lower theimpacts of these reactions
000844862 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000844862 536__ $$0G:(DE-Juel1)jicg23_20151101$$aChemical processes in the troposphere and their impact on climate (jicg23_20151101)$$cjicg23_20151101$$fChemical processes in the troposphere and their impact on climate$$x1
000844862 536__ $$0G:(DE-Juel-1)ESDE$$aEarth System Data Exploration (ESDE)$$cESDE$$x2
000844862 588__ $$aDataset connected to CrossRef
000844862 7001_ $$00000-0001-9538-3208$$aSimpson, David$$b1$$eCorresponding author
000844862 7001_ $$0P:(DE-Juel1)16212$$aSchröder, Sabine$$b2
000844862 7001_ $$0P:(DE-Juel1)167439$$aTaraborrelli, Domenico$$b3
000844862 7001_ $$0P:(DE-HGF)0$$aBott, Andreas$$b4
000844862 7001_ $$0P:(DE-Juel1)6952$$aSchultz, Martin$$b5
000844862 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-18-3147-2018$$gVol. 18, no. 5, p. 3147 - 3171$$n5$$p3147 - 3171$$tAtmospheric chemistry and physics$$v18$$x1680-7324$$y2018
000844862 8564_ $$uhttps://juser.fz-juelich.de/record/844862/files/invoice_Helmholtz-PUC-2018-12.pdf
000844862 8564_ $$uhttps://juser.fz-juelich.de/record/844862/files/acp-18-3147-2018.pdf$$yOpenAccess
000844862 8564_ $$uhttps://juser.fz-juelich.de/record/844862/files/invoice_Helmholtz-PUC-2018-12.gif?subformat=icon$$xicon
000844862 8564_ $$uhttps://juser.fz-juelich.de/record/844862/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-1440$$xicon-1440
000844862 8564_ $$uhttps://juser.fz-juelich.de/record/844862/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-180$$xicon-180
000844862 8564_ $$uhttps://juser.fz-juelich.de/record/844862/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-640$$xicon-640
000844862 8564_ $$uhttps://juser.fz-juelich.de/record/844862/files/invoice_Helmholtz-PUC-2018-12.pdf?subformat=pdfa$$xpdfa
000844862 8564_ $$uhttps://juser.fz-juelich.de/record/844862/files/acp-18-3147-2018.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000844862 8767_ $$8Helmholtz-PUC-2018-12$$92018-04-04$$d2018-04-04$$eAPC$$jZahlung erfolgt$$pacp-2017-566
000844862 909CO $$ooai:juser.fz-juelich.de:844862$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000844862 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164575$$aForschungszentrum Jülich$$b0$$kFZJ
000844862 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16212$$aForschungszentrum Jülich$$b2$$kFZJ
000844862 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167439$$aForschungszentrum Jülich$$b3$$kFZJ
000844862 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6952$$aForschungszentrum Jülich$$b5$$kFZJ
000844862 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000844862 9141_ $$y2018
000844862 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844862 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000844862 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844862 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2015
000844862 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000844862 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000844862 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844862 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844862 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844862 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000844862 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2015
000844862 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000844862 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844862 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844862 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000844862 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000844862 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000844862 9801_ $$aAPC
000844862 9801_ $$aFullTexts
000844862 980__ $$ajournal
000844862 980__ $$aVDB
000844862 980__ $$aI:(DE-Juel1)IEK-8-20101013
000844862 980__ $$aI:(DE-Juel1)JSC-20090406
000844862 980__ $$aI:(DE-82)080012_20140620
000844862 980__ $$aAPC
000844862 980__ $$aUNRESTRICTED
000844862 981__ $$aI:(DE-Juel1)ICE-3-20101013