001     844863
005     20240712101021.0
024 7 _ |a 10.5194/acp-18-1611-2018
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/20058
|2 Handle
024 7 _ |a WOS:000424122600003
|2 WOS
024 7 _ |a altmetric:32684924
|2 altmetric
037 _ _ |a FZJ-2018-02214
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Zhao, Defeng
|0 P:(DE-Juel1)136801
|b 0
|e Corresponding author
245 _ _ |a Effects of NO$_{x}$ and SO$_{2}$ on the secondary organic aerosol formation from photooxidation of α-pinene and limonene
260 _ _ |a Katlenburg-Lindau
|c 2018
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1542209458_10165
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Anthropogenic emissions such as NOxand SO2influence the biogenic secondary organic aerosol (SOA) for-mation, but detailed mechanisms and effects are still elusive.We studied the effects of NOxand SO2on the SOA for-mation from the photooxidation ofα-pinene and limoneneat ambient relevant NOxand SO2concentrations (NOx:< 1to 20 ppb, SO2: < 0.05 to 15 ppb). In these experiments,monoterpene oxidation was dominated by OH oxidation. Wefound that SO2induced nucleation and enhanced SOA massformation. NOxstrongly suppressed not only new particleformation but also SOA mass yield. However, in the presenceof SO2which induced a high number concentration of parti-cles after oxidation to H2SO4, the suppression of the massyield of SOA by NOxwas completely or partly compen-sated for. This indicates that the suppression of SOA yieldby NOxwas largely due to the suppressed new particle for-mation, leading to a lack of particle surface for the organ-ics to condense on and thus a significant influence of vaporwall loss on SOA mass yield. By compensating for the sup-pressing effect on nucleation of NOx, SO2also compensatedfor the suppressing effect on SOA yield. Aerosol mass spec-trometer data show that increasing NOxenhanced nitrate for-mation. The majority of the nitrate was organic nitrate (57–77 %), even in low-NOxconditions (<∼1 ppb). Organic ni-trate contributed 7–26 % of total organics assuming a molec-ular weight of 200 g mol−1. SOA fromα-pinene photooxida-tion at high NOxhad a generally lower hydrogen to carbonratio (H/C), compared to low NOx. The NOxdependenceof the chemical composition can be attributed to the NOxde-pendence of the branching ratio of the RO2loss reactions,leading to a lower fraction of organic hydroperoxides andhigher fractions of organic nitrates at high NOx. While NOxsuppressed new particle formation and SOA mass formation,SO2can compensate for such effects, and the combining ef-fect of SO2and NOxmay have an important influence onSOA formation affected by interactions of biogenic volatileorganic compounds (VOCs) with anthropogenic emissions
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schmitt, Sebastian H.
|0 P:(DE-Juel1)161557
|b 1
700 1 _ |a Wang, Mingjin
|0 P:(DE-Juel1)157833
|b 2
700 1 _ |a Acir, Ismail-Hakki
|0 P:(DE-Juel1)136889
|b 3
700 1 _ |a Tillmann, Ralf
|0 P:(DE-Juel1)5344
|b 4
700 1 _ |a Tan, Zhaofeng
|0 P:(DE-Juel1)173726
|b 5
700 1 _ |a Novelli, Anna
|0 P:(DE-Juel1)166537
|b 6
700 1 _ |a Fuchs, Hendrik
|0 P:(DE-Juel1)7363
|b 7
700 1 _ |a Pullinen, Iida
|0 P:(DE-Juel1)156385
|b 8
700 1 _ |a Wegener, Robert
|0 P:(DE-Juel1)2367
|b 9
700 1 _ |a Rohrer, Franz
|0 P:(DE-Juel1)16347
|b 10
700 1 _ |a Wildt, Jürgen
|0 P:(DE-Juel1)129421
|b 11
700 1 _ |a Kiendler-Scharr, Astrid
|0 P:(DE-Juel1)4528
|b 12
700 1 _ |a Wahner, Andreas
|0 P:(DE-Juel1)16324
|b 13
700 1 _ |a Mentel, Thomas F.
|0 P:(DE-Juel1)16346
|b 14
|e Corresponding author
773 _ _ |a 10.5194/acp-18-1611-2018
|g Vol. 18, no. 3, p. 1611 - 1628
|0 PERI:(DE-600)2069847-1
|n 3
|p 1611 - 1628
|t Atmospheric chemistry and physics
|v 18
|y 2018
|x 1680-7324
856 4 _ |u https://juser.fz-juelich.de/record/844863/files/invoice_Helmholtz-PUC-2018-12.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/844863/files/acp-18-1611-2018.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/844863/files/invoice_Helmholtz-PUC-2018-12.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/844863/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/844863/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/844863/files/invoice_Helmholtz-PUC-2018-12.jpg?subformat=icon-640
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/844863/files/invoice_Helmholtz-PUC-2018-12.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/844863/files/acp-18-1611-2018.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:844863
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)136801
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161557
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)157833
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)136889
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)5344
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)173726
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166537
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)7363
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)156385
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)2367
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)16347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)129421
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)4528
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)16324
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)16346
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21