000845175 001__ 845175
000845175 005__ 20240712084523.0
000845175 0247_ $$2doi$$a10.1038/s42005-018-0026-3
000845175 0247_ $$2Handle$$a2128/19267
000845175 0247_ $$2WOS$$aWOS:000437243000001
000845175 0247_ $$2altmetric$$aaltmetric:44050353
000845175 037__ $$aFZJ-2018-02479
000845175 082__ $$a530
000845175 1001_ $$0P:(DE-Juel1)173073$$aKrückemeier, Lisa$$b0$$eCorresponding author
000845175 245__ $$aDeveloping design criteria for organic solar cells using well-absorbing non-fullerene acceptors
000845175 260__ $$aLondon$$bSpringer Nature$$c2018
000845175 3367_ $$2DRIVER$$aarticle
000845175 3367_ $$2DataCite$$aOutput Types/Journal article
000845175 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1531124589_7375
000845175 3367_ $$2BibTeX$$aARTICLE
000845175 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845175 3367_ $$00$$2EndNote$$aJournal Article
000845175 520__ $$aIn recent years, efficiencies of bulk heterojunction solar cells have risen substantially mostly due to the development of well-absorbing small molecules that replace fullerenes as the acceptor molecule. The improved light absorption due to the combination of two strongly absorbing molecules raises the question, how to best combine the absorption onsets of the donor and acceptor molecule to maximize efficiency. By using numerical simulations, we explain under which circumstances complementary absorption or overlapping absorption bands of the two molecules will be more beneficial for efficiency. Only when mobility and lifetime of charge carriers are sufficiently high to allow sufficient charge collection for layer thicknesses around the second interference maximum, a combination of complementary absorbing molecules is more efficient. For smaller thicknesses, a blend of molecules with the same absorption onset achieves higher efficiencies.
000845175 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000845175 588__ $$aDataset connected to CrossRef
000845175 7001_ $$0P:(DE-Juel1)166075$$aKaienburg, Pascal$$b1
000845175 7001_ $$0P:(DE-Juel1)139583$$aFlohre, Jan$$b2$$ufzj
000845175 7001_ $$0P:(DE-Juel1)130219$$aBittkau, Karsten$$b3
000845175 7001_ $$0P:(DE-Juel1)164454$$aZonno, Irene$$b4
000845175 7001_ $$0P:(DE-Juel1)169731$$aKrogmeier, Benedikt$$b5
000845175 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b6$$eCorresponding author
000845175 773__ $$0PERI:(DE-600)2921913-9$$a10.1038/s42005-018-0026-3$$gVol. 1, no. 1, p. 27$$n1$$p27$$tCommunications Physics$$v1$$x2399-3650$$y2018
000845175 8564_ $$uhttps://juser.fz-juelich.de/record/845175/files/30033730940007872529INVOIC2676105557001.pdf
000845175 8564_ $$uhttps://juser.fz-juelich.de/record/845175/files/30033730940007872529INVOIC2676105557001.gif?subformat=icon$$xicon
000845175 8564_ $$uhttps://juser.fz-juelich.de/record/845175/files/30033730940007872529INVOIC2676105557001.jpg?subformat=icon-1440$$xicon-1440
000845175 8564_ $$uhttps://juser.fz-juelich.de/record/845175/files/30033730940007872529INVOIC2676105557001.jpg?subformat=icon-180$$xicon-180
000845175 8564_ $$uhttps://juser.fz-juelich.de/record/845175/files/30033730940007872529INVOIC2676105557001.jpg?subformat=icon-640$$xicon-640
000845175 8564_ $$uhttps://juser.fz-juelich.de/record/845175/files/s42005-018-0026-3.pdf$$yOpenAccess
000845175 8564_ $$uhttps://juser.fz-juelich.de/record/845175/files/s42005-018-0026-3.gif?subformat=icon$$xicon$$yOpenAccess
000845175 8564_ $$uhttps://juser.fz-juelich.de/record/845175/files/s42005-018-0026-3.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000845175 8564_ $$uhttps://juser.fz-juelich.de/record/845175/files/s42005-018-0026-3.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000845175 8564_ $$uhttps://juser.fz-juelich.de/record/845175/files/s42005-018-0026-3.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000845175 8767_ $$82676105557$$92018-05-15$$d2018-06-11$$eAPC$$jZahlung erfolgt
000845175 909CO $$ooai:juser.fz-juelich.de:845175$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000845175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173073$$aForschungszentrum Jülich$$b0$$kFZJ
000845175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166075$$aForschungszentrum Jülich$$b1$$kFZJ
000845175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139583$$aForschungszentrum Jülich$$b2$$kFZJ
000845175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130219$$aForschungszentrum Jülich$$b3$$kFZJ
000845175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164454$$aForschungszentrum Jülich$$b4$$kFZJ
000845175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169731$$aForschungszentrum Jülich$$b5$$kFZJ
000845175 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b6$$kFZJ
000845175 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000845175 9141_ $$y2018
000845175 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000845175 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000845175 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000845175 9801_ $$aAPC
000845175 9801_ $$aFullTexts
000845175 980__ $$ajournal
000845175 980__ $$aVDB
000845175 980__ $$aUNRESTRICTED
000845175 980__ $$aI:(DE-Juel1)IEK-5-20101013
000845175 980__ $$aAPC
000845175 981__ $$aI:(DE-Juel1)IMD-3-20101013