001     845175
005     20240712084523.0
024 7 _ |a 10.1038/s42005-018-0026-3
|2 doi
024 7 _ |a 2128/19267
|2 Handle
024 7 _ |a WOS:000437243000001
|2 WOS
024 7 _ |a altmetric:44050353
|2 altmetric
037 _ _ |a FZJ-2018-02479
082 _ _ |a 530
100 1 _ |a Krückemeier, Lisa
|0 P:(DE-Juel1)173073
|b 0
|e Corresponding author
245 _ _ |a Developing design criteria for organic solar cells using well-absorbing non-fullerene acceptors
260 _ _ |a London
|c 2018
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1531124589_7375
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In recent years, efficiencies of bulk heterojunction solar cells have risen substantially mostly due to the development of well-absorbing small molecules that replace fullerenes as the acceptor molecule. The improved light absorption due to the combination of two strongly absorbing molecules raises the question, how to best combine the absorption onsets of the donor and acceptor molecule to maximize efficiency. By using numerical simulations, we explain under which circumstances complementary absorption or overlapping absorption bands of the two molecules will be more beneficial for efficiency. Only when mobility and lifetime of charge carriers are sufficiently high to allow sufficient charge collection for layer thicknesses around the second interference maximum, a combination of complementary absorbing molecules is more efficient. For smaller thicknesses, a blend of molecules with the same absorption onset achieves higher efficiencies.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kaienburg, Pascal
|0 P:(DE-Juel1)166075
|b 1
700 1 _ |a Flohre, Jan
|0 P:(DE-Juel1)139583
|b 2
|u fzj
700 1 _ |a Bittkau, Karsten
|0 P:(DE-Juel1)130219
|b 3
700 1 _ |a Zonno, Irene
|0 P:(DE-Juel1)164454
|b 4
700 1 _ |a Krogmeier, Benedikt
|0 P:(DE-Juel1)169731
|b 5
700 1 _ |a Kirchartz, Thomas
|0 P:(DE-Juel1)159457
|b 6
|e Corresponding author
773 _ _ |a 10.1038/s42005-018-0026-3
|g Vol. 1, no. 1, p. 27
|0 PERI:(DE-600)2921913-9
|n 1
|p 27
|t Communications Physics
|v 1
|y 2018
|x 2399-3650
856 4 _ |u https://juser.fz-juelich.de/record/845175/files/30033730940007872529INVOIC2676105557001.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/845175/files/30033730940007872529INVOIC2676105557001.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/845175/files/30033730940007872529INVOIC2676105557001.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/845175/files/30033730940007872529INVOIC2676105557001.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/845175/files/30033730940007872529INVOIC2676105557001.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/845175/files/s42005-018-0026-3.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/845175/files/s42005-018-0026-3.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/845175/files/s42005-018-0026-3.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/845175/files/s42005-018-0026-3.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/845175/files/s42005-018-0026-3.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:845175
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173073
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166075
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)139583
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130219
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)164454
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)169731
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)159457
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21