000845271 001__ 845271
000845271 005__ 20220930130146.0
000845271 0247_ $$2doi$$a10.1021/acscatal.7b04408
000845271 0247_ $$2WOS$$aWOS:000431727300029
000845271 0247_ $$2altmetric$$aaltmetric:34920182
000845271 0247_ $$2pmid$$apmid:30101036
000845271 0247_ $$2Handle$$a2128/22700
000845271 037__ $$aFZJ-2018-02552
000845271 082__ $$a540
000845271 1001_ $$0P:(DE-Juel1)159365$$aSchulte, Marianne$$b0
000845271 245__ $$aConformational Sampling of the Intrinsically Disordered C-Terminal Tail of DERA Is Important for Enzyme Catalysis
000845271 260__ $$aWashington, DC$$bACS$$c2018
000845271 3367_ $$2DRIVER$$aarticle
000845271 3367_ $$2DataCite$$aOutput Types/Journal article
000845271 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568026470_22201
000845271 3367_ $$2BibTeX$$aARTICLE
000845271 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845271 3367_ $$00$$2EndNote$$aJournal Article
000845271 520__ $$a2-Deoxyribose-5-phosphate aldolase (DERA) catalyzes the reversible conversion of acetaldehyde and glyceraldehyde-3-phosphate into deoxyribose-5-phosphate. DERA is used as a biocatalyst for the synthesis of drugs such as statins and is a promising pharmaceutical target due to its involvement in nucleotide catabolism. Despite previous biochemical studies suggesting the catalytic importance of the C-terminal tyrosine residue found in several bacterial DERAs, the structural and functional basis of its participation in catalysis remains elusive because the electron density for the last eight to nine residues (i.e., the C-terminal tail) is absent in all available crystal structures. Using a combination of NMR spectroscopy and molecular dynamics simulations, we conclusively show that the rarely studied C-terminal tail of E. coli DERA (ecDERA) is intrinsically disordered and exists in equilibrium between open and catalytically relevant closed states, where the C-terminal tyrosine (Y259) enters the active site. Nuclear Overhauser effect distance restraints, obtained due to the presence of a substantial closed state population, were used to derive the solution-state structure of the ecDERA closed state. Real-time NMR hydrogen/deuterium exchange experiments reveal that Y259 is required for efficiency of the proton abstraction step of the catalytic reaction. Phosphate titration experiments show that, in addition to the phosphate-binding residues located near the active site, as observed in the available crystal structures, ecDERA contains previously unknown auxiliary phosphate-binding residues on the C-terminal tail which could facilitate in orienting Y259 in an optimal position for catalysis. Thus, we present significant insights into the structural and mechanistic importance of the ecDERA C-terminal tail and illustrate the role of conformational sampling in enzyme catalysis.
000845271 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000845271 536__ $$0G:(DE-Juel1)jics69_20151101$$aComputational Enzyme Design (jics69_20151101)$$cjics69_20151101$$fComputational Enzyme Design$$x1
000845271 588__ $$aDataset connected to CrossRef
000845271 7001_ $$0P:(DE-Juel1)165744$$aPetrović, Dušan$$b1
000845271 7001_ $$0P:(DE-Juel1)144510$$aNeudecker, Philipp$$b2
000845271 7001_ $$0P:(DE-Juel1)132001$$aHartmann, Rudolf$$b3
000845271 7001_ $$0P:(DE-Juel1)128906$$aPietruszka, Jörg$$b4$$ufzj
000845271 7001_ $$0P:(DE-Juel1)133857$$aWillbold, Sabine$$b5
000845271 7001_ $$0P:(DE-Juel1)132029$$aWillbold, Dieter$$b6$$ufzj
000845271 7001_ $$0P:(DE-Juel1)157799$$aPanwalkar, Vineet$$b7$$eCorresponding author$$ufzj
000845271 773__ $$0PERI:(DE-600)2584887-2$$a10.1021/acscatal.7b04408$$gp. 3971 - 3984$$n5$$p3971 - 3984$$tACS catalysis$$v8$$x2155-5435$$y2018
000845271 8564_ $$uhttps://juser.fz-juelich.de/record/845271/files/1200125863_2018-07-17.pdf
000845271 8564_ $$uhttps://juser.fz-juelich.de/record/845271/files/1200125863_2018-07-17.pdf?subformat=pdfa$$xpdfa
000845271 8564_ $$uhttps://juser.fz-juelich.de/record/845271/files/acscatal.7b04408OA.pdf$$yOpenAccess
000845271 8564_ $$uhttps://juser.fz-juelich.de/record/845271/files/acscatal.7b04408OA.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000845271 8767_ $$8APC600010264$$92018-07-17$$d2019-06-27$$eHybrid-OA$$jZahlung erfolgt$$z2000 USD, Abwicklung nicht über ZB
000845271 909CO $$ooai:juser.fz-juelich.de:845271$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000845271 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159365$$aForschungszentrum Jülich$$b0$$kFZJ
000845271 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165744$$aForschungszentrum Jülich$$b1$$kFZJ
000845271 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144510$$aForschungszentrum Jülich$$b2$$kFZJ
000845271 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132001$$aForschungszentrum Jülich$$b3$$kFZJ
000845271 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128906$$aForschungszentrum Jülich$$b4$$kFZJ
000845271 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133857$$aForschungszentrum Jülich$$b5$$kFZJ
000845271 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132029$$aForschungszentrum Jülich$$b6$$kFZJ
000845271 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157799$$aForschungszentrum Jülich$$b7$$kFZJ
000845271 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000845271 9141_ $$y2018
000845271 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845271 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000845271 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS CATAL : 2015
000845271 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS CATAL : 2015
000845271 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845271 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845271 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000845271 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845271 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845271 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845271 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845271 920__ $$lyes
000845271 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x0
000845271 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x1
000845271 9201_ $$0I:(DE-Juel1)IBOC-20090406$$kIBOC$$lInstitut für Bioorganische Chemie (HHUD)$$x2
000845271 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x3
000845271 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x4
000845271 9801_ $$aAPC
000845271 9801_ $$aFullTexts
000845271 980__ $$ajournal
000845271 980__ $$aVDB
000845271 980__ $$aUNRESTRICTED
000845271 980__ $$aI:(DE-Juel1)ICS-6-20110106
000845271 980__ $$aI:(DE-Juel1)IBG-1-20101118
000845271 980__ $$aI:(DE-Juel1)IBOC-20090406
000845271 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000845271 980__ $$aI:(DE-82)080012_20140620
000845271 980__ $$aAPC
000845271 981__ $$aI:(DE-Juel1)IBI-7-20200312